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This is just all the knowledge about vectors and matrices that you may have learnt in high school mathematics.
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Chapter 1

Introduction of vectors

In daily life, many quantities are described by magnitude alone, such as length, time, and temperature. These are called scalars.
However, some quantities are described by both magnitude and direction. For example, the acceleration of an object.
For simplicity, we visualize vectors in two dimensions.

Definition 1.1. A vector is represented by a directed line segment. Arrowhead represents the direction, while the length repre-

sents the magnitude. The vector is denoted by
−−→
AB (A to B), a, a⃗.

Magnitude (length) of a vector a is denoted by |⃗a|.
We say that two vectors a⃗ and b⃗ are equal if they have the same magnitude and direction.

In 2D, it is represented as the following:

x

y

a⃗

A −−→AB

B

Figure 1.1: Vector

Definition 1.2. Negative vector of a vector u⃗ is the vector with equal magnitude but opposite direction. It is denoted by −u⃗.

u⃗ −u⃗ −−→
AB

−
−−→
AB

=
−−→
BA

Figure 1.2: A vector and its corresponding negative vector

Definition 1.3. A zero vector is a vector with zero magnitude and no direction. It is denoted by 0⃗.

Definition 1.4. An unit vector is a vector with magnitude 1. It is denoted by û.

Lemma 1.5. û = u⃗
|u⃗| is unit vector with the same direction as u⃗.
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6 CHAPTER 1. INTRODUCTION OF VECTORS

Example 1.1. The most common unit vectors are the unit vectors along the axis.
î corresponds to the unit vector along the x-axis.
ĵ corresponds to the unit vector along the y-axis.
k̂ corresponds to the unit vector along the z-axis.

x

y

î
ĵ

Figure 1.3: The unit vectors along the x-axis and y-axis

Definition 1.6. The addition of two vectors are also a vector and is defined as below.

A B

C

−−→
AB

−−→
BC−→

AC
=
−−→
AB

+
−−→
BC

(a) Triangle Law of Addition

A B

C D

−−→
AB

−→
AC −−→

AD
=
−−→
AB

+
−→
AC

(b) Parallelogram Law of Addition

Definition 1.7. The subtraction of two vectors u⃗ and v⃗ is u⃗− v⃗ = u⃗+ (−v⃗).

A B

C

−−→
AB

−→
AC

−−→B
C
= −→A

C
− −−→A

B

Figure 1.5: Subtraction

Definition 1.8. The scalar multiplication of a vector u⃗ is defined by:

1. If λ > 0, then λu⃗ is a vector with magnitude λ |u| and same direction as u⃗.

2. If λ < 0, then λu⃗ is a vector with magnitude −λ |u| and opposite direction as u⃗.

3. If λ = 0, then λu⃗ is a zero vector.

u⃗
2u⃗

(−
1)
u⃗

Figure 1.6: Scalar multiplication of vector
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Lemma 1.9. For any vectors u⃗, v⃗, w⃗ and any real number λ, µ,

1. u⃗+ v⃗ = v⃗ + u⃗

2. u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗

3. u⃗+ 0⃗ = u⃗

4. λ(µa⃗) = (λµ)⃗a

5. λ(u⃗± v⃗) = λu⃗± λv⃗

6. (λ± µ)u⃗ = λu⃗± µu⃗

Theorem 1.10. If u⃗ and v⃗ are non-zero and not parallel, then

1. If λu⃗+ µv⃗ = 0⃗, then λ = µ = 0

2. If λ1u⃗+ µ1v⃗ = λ2u⃗+ µ2v⃗, then λ1 = λ2 and µ1 = µ2.

Remark 1.10.1. Knowing the properties, we can find that we can represent any vectors in 2D space in terms of î and ĵ, and any
vectors in 3D space in terms of î, ĵ and k̂.

We have now finished introducing the basics of vectors. We can use the vectors to do all sorts of stuff.

Definition 1.11. A position vector is a vector that starts at origin O.

O
x

y

−→O
A

A

−−→
OB

B

Figure 1.7: Position Vectors

Theorem 1.12. (Section formula) If P is a point of AB such that AP : PB = r : s, then p⃗ = sa⃗+r⃗b
s+r where a⃗, b⃗ and p⃗ are the

position vector of A, B and P respectively.

A P B

O

a⃗ b⃗p⃗

r s

Figure 1.8: Section formula
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Chapter 2

Introduction to matrix

In real life, we may process data using a rectangular array of real numbers.

Definition 2.1. A matrix is a rectangular array of real numbers arranged in the form:
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


The dimension of this matrix is m× n. Numbers inside the matrix are elements of the matrix. It is denoted by A.

In some advanced mathematics, we use vectors to define matrix as in the form: | | |
a⃗1 a⃗2 . . . a⃗n
| | |


where a⃗1, a⃗2, · · · , a⃗n are m-dimensional vectors.

Definition 2.2. A zero matrix is a matrix where all the elements are zero.
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


A m× n zero matrix is denoted as 0m×n or 0.

Definition 2.3. A row matrix is a matrix with only 1 row. A column matrix is a matrix with only 1 column.

Example 2.1.
(
1 2

)
is a row matrix.

Example 2.2.

(
3
4

)
is a column matrix.

Definition 2.4. A square matrix with order n is a matrix with dimension n×n. The elements a11, a22, · · · , ann are the principal
diagonal elements.

Definition 2.5. A diagonal matrix is a square matrix where elements that are not principal diagonal elements are zero.

Example 2.3.

(
4 0
0 1

)
is a diagonal matrix.
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Definition 2.6. An identity matrix is a diagonal matrix were principal diagonal elements are all 1.
1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


A n× n identity matrix is denoted as In or I.

Definition 2.7. For two m × n matrices A with elements aij and B with elements bij , addition and subtraction of A and B is
defined by

A±B =


a11 ± b11 a12 ± b12 . . . a1n ± b1n
a21 ± b21 a22 ± b22 . . . a2n ± b2n

...
...

. . .
...

am1 ± bm1 am2 ± bm2 . . . amn ± bmn


Definition 2.8. For a m× n matrix A with elements aij and a scalar k, scalar multiplication is defined by:

kA =


ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
...

...
. . .

...
kam1 kam2 . . . kamn


Lemma 2.9. For m× n matrices A,B,C and scalars λ, µ,

1. A+B = B+A

2. (A+B) +C = A+ (B+C)

3. A+ 0 = 0+A = A

4. A+ (−A) = 0

5. (λ± µ)A = λA± µA

6. λ(A±B) = λA± λB

7. λ(µA) = (λµ)A

8. 0A = 0

9. λ0 = 0

There is an important scalar that can be computed from square matrices. It is called determinant.

Definition 2.10. For any square matrix A, the determinant of A is a real number that is denoted by |A| or detA.

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
How do we calculate determinant?

Definition 2.11. For a 2× 2 matrix, ∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21
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Definition 2.12. For a 3× 3 matrix,∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

Definition 2.13. Given a matrix A with elements aij . Minor of the element aij , denoted by Mij , is a determinant of order
(n− 1) which is obtained by removing the i-th row and j-th column of |A|.
Cofactor of the element aij , denoted by Aij , is defined by Aij = (−1)i+jMij .

Example 2.4. Given a matrix A =

1 2 3
4 5 6
7 8 9

.

M12 =

∣∣∣∣4 6
7 9

∣∣∣∣ A12 = −
∣∣∣∣4 6
7 9

∣∣∣∣
M33 =

∣∣∣∣1 2
4 5

∣∣∣∣ A33 = +

∣∣∣∣1 2
4 5

∣∣∣∣
Lemma 2.14. For any identity matrix I, |I| = 1.

Theorem 2.15. (Cofactor expansion) We can expand the determinant using cofactors along i-th row or j-th column.∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = ai1Ai1 + ai2Ai2 + · · ·+ ainAin = a1jA1j + a2jA2j + · · ·+ anjAnj

It is sometimes very tedious to calculate determinant directly. Luckily, we can perform row and column operations on the matrix so
that we can simplify the process.

Definition 2.16. By definition, we can perform addition and scalar multiplication to determinant.∣∣∣∣∣∣∣∣∣
a11 a12 + b1 . . . a1n
a21 a22 + b2 . . . a2n
...

...
. . .

...
an1 an2 + bn . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
a11 b1 . . . a1n
a21 b2 . . . a2n
...

...
. . .

...
an1 bn . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 + b1 a22 + b2 . . . a2n + bn
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
b1 b2 . . . bn
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 λa12 . . . a1n
a21 λa22 . . . a2n
...

...
. . .

...
an1 λan2 . . . ann

∣∣∣∣∣∣∣∣∣ = λ

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
µa21 µa22 . . . µa2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = µ

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
We can also change the order.

−

∣∣∣∣∣∣∣∣∣
a12 a11 . . . a1n
a22 a21 . . . a2n
...

...
. . .

...
an2 an1 . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣
a21 a22 . . . a2n
a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
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Lemma 2.17. We can add multiples of rows and columns into another rows and columns respectively.∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 − λa1j a12 . . . a1n
a21 − λa2j a22 . . . a2n

...
...

. . .
...

an1 − λanj an2 . . . ann

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
a11 − µai1 a12 − µai2 . . . a1n − µain

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
Example 2.5. ∣∣∣∣∣∣

2 5 10
10 3 4
2 5 10

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2 5 10
10 3 4
0 0 0

∣∣∣∣∣∣ = 0



Chapter 3

Product of vectors and matrices

When we calculate the products of vectors and matrices, it is quite different with our scalar multiplication. In this chapter, we will
purely discuss them and their applications. Let’s start with vector.

Definition 3.1. Given two vectors u⃗ and v⃗. Dot product (Scalar product) of u⃗ and v⃗ is defined by:

u⃗ · v⃗ = |u⃗| |v⃗| cos θ

where θ is the angle between two vectors.

Lemma 3.2. For any vectors u⃗, v⃗, w⃗ and any scalar λ,

1. u⃗ · 0⃗ = 0⃗ · u⃗ = 0

2. u⃗ · u⃗ = |u⃗|2 ≥ 0

3. u⃗ · v⃗ = v⃗ · u⃗

4. u⃗ · u⃗ = 0 if and only if u⃗ = 0⃗

5. λ(u⃗ · v⃗) = (λu⃗) · v⃗ = u⃗ · (λv⃗)

6. u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗

7. |u⃗ · v⃗| ≤ |u⃗| |v⃗|

8. |u⃗− v⃗|2 = |u|2 + |v|2 − 2(u⃗ · v⃗)

Theorem 3.3. For any two non-zero vectors u⃗ and v⃗, u⃗ · v⃗ = 0 if and only if u⃗ ⊥ v⃗.

Lemma 3.4. In the 3D coordinate system,

î · î = ĵ · ĵ = k̂ · k̂ = 1 î · ĵ = ĵ · k̂ = k̂ · î = 0

Given two vectors u⃗ = u1î+ u2ĵ + u3k̂ and v⃗ = v1î+ v2ĵ + v3k̂. We can define dot product of u⃗ and v⃗ by:

u⃗ · v⃗ = u1v1 + u2v2 + u3v3

13



14 CHAPTER 3. PRODUCT OF VECTORS AND MATRICES

Interestingly, from the definition, we can project a vector into another vector.

Definition 3.5. Given two non-zero vectors u⃗ and v⃗. Projection of u⃗ onto v⃗ is a vector p⃗ defined by:

p⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

Magnitude of p⃗ is |p⃗| = |u⃗·v⃗|
|v⃗| .

u⃗

v⃗

p⃗

(a) Projection with equal direction

u⃗
v⃗

p⃗

(b) Projection with opposite direction

We have another type of product for vectors.

Definition 3.6. Given two vectors u⃗ and v⃗. Cross product (Vector product) of u⃗ and v⃗ is defined by:

u⃗× v⃗ = (|u⃗| |v⃗| sin θ)n̂

where θ is the angle between u⃗ and v⃗, and n̂ is the unit vector perpendicular to both u⃗ and v⃗ and its direction is determined by
right-hand rule.

Figure 3.2: Right Hand Rule

Lemma 3.7. For any vectors u⃗, v⃗, w⃗ and any scalar λ,

1. u⃗× 0⃗ = 0⃗× u⃗ = 0⃗

2. u⃗× u⃗ = 0⃗

3. u⃗× v⃗ = −(v⃗ × u⃗)

4. (λu⃗)× v⃗ = u⃗× (λv⃗) = λ(u⃗× v⃗)

5. u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗

6. (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗

7. |u⃗× v⃗|2 = |u⃗|2 |v⃗|2 − (u⃗ · v⃗)2
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We can make use of the determinant learnt to calculate the cross product.

Lemma 3.8. In the 3D coordinate system,

î× î = ĵ × ĵ = k̂ × k̂ = 0 î× ĵ = k̂ ĵ × k̂ = î k̂ × î = ĵ

Given two vectors u⃗ = u1î+ u2ĵ + u3k̂ and u⃗ = v1î+ v2ĵ + v3k̂. We can define cross product of u⃗ and v⃗ by:

u⃗× v⃗ =

∣∣∣∣∣∣
î ĵ k̂
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
Now that we have introduced both products about vectors. What are the applications? The most simple one is to calculate the area
and volume.

Theorem 3.9. Area of the parallelogram formed by two vectors u⃗ and v⃗ is |u⃗× v⃗|.

u⃗

v⃗

Figure 3.3: Parallelogram formed by two vectors

Lemma 3.10. Area of the triangle formed by two vectors u⃗ and v⃗ is 1
2 |u⃗× v⃗|.

u⃗

v⃗

Figure 3.4: Triangle formed by two vectors

Theorem 3.11. Volume of the parallelepiped formed by three vectors u⃗, v⃗ and w⃗ is |u⃗ · (v⃗ × w⃗)|.

u⃗
v⃗

w⃗

Figure 3.5: Parallelepiped formed by three vectors

Lemma 3.12. Volume of the tetrahedron formed by three vectors u⃗, v⃗ and w⃗ is 1
6 |u⃗ · (v⃗ × w⃗)|.

u⃗
v⃗

w⃗

Figure 3.6: Tetrahedron formed by three vectors
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We can also use cross product to determine if 3 points are collinear.

Theorem 3.13. Given three points A, B and C. They are collinear if and only if
−−→
AB ×

−→
AC = 0⃗.

A
B

C

(a) Collinear

A

B

C

(b) Not collinear

What about multiplying matrices?

Definition 3.14. Given an m × n matrix A with elements aij and an n × p matrix B with elements bij . The product of A and
B is an m× p matrix C = AB with each elements cij obtained by:

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n∑
k=1

ainbnj

Example 3.1. Given that A =

(
1 2 3
4 5 6

)
and B =

 7 8
9 10
11 12

. Then

AB =

(
1 2 3
4 5 6

) 7 8
9 10
11 12

 =

(
58 64
139 154

)
BA =

 7 8
9 10
11 12

(
1 2 3
4 5 6

)
=

39 54 69
49 68 87
59 82 105


Lemma 3.15. For any scalars λ and µ and matrices A,B,C that allows for matrix multiplications between them,

1. A(BC) = (AB)C

2. A(B+C) = AB+AC

3. (A+B)C = AC+BC

4. (λA)(µB) = λµ(AB)

5. 0A = A0 = 0

6. ImA = AIn = A if A is an m× n matrix

7. |AB| = |A| |B|

Definition 3.16. Let A be a square matrix and n be a positive integer. Then

An =

n∏
i=1

A

Some of the matrices have its multiplicative inverse, just like scalar.

Definition 3.17. Given an n× n matrix A. It is invertible (non-singular) if there exists another n× n matrix B such that

AB = In

B is the inverse matrix of A, and is denoted by A−1.

Theorem 3.18. For any square matrices A and B, if AB = I, then BA = I and B is the inverse of A.

Lemma 3.19. For any invertible matrix A,
∣∣A−1

∣∣ = |A|−1
.
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Theorem 3.20. (Uniqueness) Let A be an invertible matrix. If both B and C are inverses of A, then B = C.

Theorem 3.21. Let A and B be two invertible n× n matrices, and λ be a non-zero scalar.

1. A−1 is invertible and (A−1)−1 = A

2. λA is invertible and (λA)−1 = 1
λA

−1

3. AB is invertible and (AB)−1 = B−1A−1

Lemma 3.22. If A is invertible and k is a positive integer, then Ak is invertible and (Ak)−1 = (A−1)k.

Based on definition, it seems we may need to find the inverse by brute force. Luckily, there is a way to easily find the inverse. Before
that, we should introduce the transpose.

Definition 3.23. Given a m×n matrix A. Transpose of matrix A, denoted by AT , is a n×m matrix obtained by interchanging
the rows and columns of A.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 AT =


a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn


Lemma 3.24. Let λ be a scalar, and matrices A,B that allows for matrix multiplications.

1. IT = I

2. (AT )T

3. (A+B)T = AT +BT

4. (λA)T = λAT

5. (AB)T = BTAT

6. If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .

We can now introduce the adjoint matrix.

Definition 3.25. For any n× n square matrix A, adjoint matrix is defined by:

adjA =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

An1 An2 . . . Ann


T

where Aij is the cofactor of aij .

Using this matrix, we can get a matrix that is a multiple of identity matrix using cofactor expansion.

Theorem 3.26. Let A be a square matrix. Then

A(adjA) = (adjA) =


|A| 0 . . . 0

0 |A|
. . .

...
...

. . .
. . . 0

0 . . . 0 |A|

 = |A| I

As we can see, we have obtained a formula for inverse matrix.

Theorem 3.27. Let A be a square matrix.

1. If |A| ≠ 0, then A−1 = 1
|A| adjA

2. A is invertible if and only if |A| ≠ 0.
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Example 3.2. Given A =

 1 1 4
2 0 3
−1 2 0

. We can find that

|A| =

∣∣∣∣∣∣
1 1 4
2 0 3
−1 2 0

∣∣∣∣∣∣ = 7

Therefore, we can see that A is invertible. Then

adjA =



∣∣∣∣0 3
2 0

∣∣∣∣ −
∣∣∣∣ 2 3
−1 0

∣∣∣∣ ∣∣∣∣ 2 0
−1 2

∣∣∣∣
−
∣∣∣∣1 4
2 0

∣∣∣∣ ∣∣∣∣ 1 4
−1 0

∣∣∣∣ −
∣∣∣∣ 1 1
−1 2

∣∣∣∣∣∣∣∣1 4
0 3

∣∣∣∣ −
∣∣∣∣1 4
2 3

∣∣∣∣ ∣∣∣∣1 1
2 0

∣∣∣∣



T

=

−6 8 3
−3 4 5
4 −3 −2

 A−1 =
1

7

−6 8 3
−3 4 5
4 −3 −2

 =

− 6
7

8
7

3
7

− 3
7

4
7

5
7

4
7 − 3

7 − 2
7





Chapter 4

System of linear equations

One of the very important applications of matrices is solving a system of multiple linear equations.

Definition 4.1. A system of m linear equations in n unknowns is in form:
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

It is consistent if it has solutions. It is inconsistent if it has no solutions.

For simplicity, we focus on system of n linear equations in n unknown. One of the obvious way is to use invertible matrix.

Theorem 4.2. We can turn the system of linear equations into form:

AX = B A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 X =


x1

x2

...
xn

 B =


b1
b2
...
bm


If A is a square matrix, A is invertible if and only if AX = B has an unique solution X = A−1B.

Lemma 4.3. Given a system of n linear equation in n unknowns AX = B.

1. AX = B has an unique solution if and only if |A| ≠ 0.

2. AX = B has either no solutions or infinitely many solutions if and only if |A| = 0.

It can be tedious to find invertible matrix in order to solve the system of linear equations. We introduce Cramer’s Rule, which make
uses of determinant.

Theorem 4.4. (Cramer’s Rule) For a system of 2 linear equations in 2 unknowns, we let{
a11x+ a12y = b1

a21x+ a22y = b2
∆ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∆x =

∣∣∣∣b1 a12
b2 a22

∣∣∣∣ ∆y

∣∣∣∣a11 b1
a21 b2

∣∣∣∣
If ∆ ̸= 0, then x = ∆x

∆ and y =
∆y

∆ is the unique solution of the system.
For a system of 2 linear equations in 2 unknowns, we let

a11x+ a12y + a13z = b1

a21x+ a22y + a23z = b2

a31x+ a32y + a33z = b3

∆ =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ∆x =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣ ∆y =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣ ∆z =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
If ∆ ̸= 0, then x = ∆x

∆ , y =
∆y

∆ and z = ∆z

∆ is the unique solution of the system.
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Interestingly, Cramer’s Rule can help us determine whether a system of linear equations has no solutions or infinitely many solutions.

Theorem 4.5. For a system of 2 linear equations in 2 unknowns:

1. If ∆ ̸= 0, then the system has an unique solution.

2. If ∆ = 0 and either ∆x ̸= 0 or ∆y ̸= 0, then the system has no solutions.

3. If ∆ = 0 and ∆x = ∆y = 0, then the system has infinite many solutions.

For a system of 3 linear equations in 3 unknowns:

1. If ∆ ̸= 0, then the system has an unique solution.

2. If ∆ = 0 and either ∆x ̸= 0, ∆y ̸= 0 or ∆z ̸= 0, then the system has no solutions.

3. If ∆ = 0 and ∆x = ∆y = ∆z = 0, then the system has infinite many solutions.

We now introduce a third method of solving the system of linear equations, which is Gaussian elimination. Before that, we introduce
the row echelon form.

Definition 4.6. An augmented matrix is a matrix that is obtained by appending an original matrix.

Example 4.1. Assume that we want to represent {
a11x+ a12y = b1

a21x+ a22y = b2

We can use the following augmented matrix to represent this system of linear equations.(
a11 a12 b1
a21 a22 b2

)

Remark 4.6.1. What’s special about system of linear equations is that we ca perform row operations to augmented matrix.

Definition 4.7. An augmented matrix is in row echelon form if

1. The first non-zero element in each row is 1.

2. The first non-zero element in each row occurs in a column to the right of the first non-zero element in the preceding row.

3. Any zero rows are placed at the bottom of the matrix.

Example 4.2. Following are some augmented matrices that are in row echelon form.

(
1 3 2
0 1 3

)  1 3 6 1
0 1 3 5
0 0 1 2

  1 7 6 5
0 0 1 9
0 0 0 0


Once we turn an augmented matrix into row echelon form, we can obtain the solution by back substitutions.
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Example 4.3. We want to find the solution of this system of linear equations:
x+ 3y + 4z = 19

2x+ 5y + 3z = 21

3x+ 7y + 3z = 26

We turn this system into an augmented matrix, then perform row operations. 1 3 4 19
2 5 3 21
3 7 3 26

 ∼

 1 3 4 19
0 −1 −5 −17
0 −2 −9 −31


∼

 1 3 4 19
0 1 5 17
0 −2 −9 −31


∼

 1 3 4 19
0 1 5 17
0 0 1 3


From this, we can turn the augmented matrix into linear equations again and get the solution.

x+ 3y + 4z = 19

y + 5z = 17

z = 3


x = 1

y = 2

z = 3

Example 4.4. We want to find the solution of this system of linear equations:
x+ 3y + 4z = 19

2x+ 5y + 3z = 21

3x+ 7y + 2z = 23

We turn this system into an augmented matrix, then perform row operations. 1 3 4 19
2 5 3 21
3 7 2 23

 ∼

 1 3 4 19
0 −1 −5 −17
0 −2 −10 −34


∼

 1 3 4 19
0 1 5 17
0 −2 −10 −34


∼

 1 3 4 19
0 1 5 17
0 0 0 0


From this, we can turn the augmented matrix into linear equations again and get the solution. Let t be any real number.

{
x+ 3y + 4z = 19

y + 5z = 17


x = 11t− 32

y = −5t+ 17

z = t

There are a special kind of system of linear equations called the system of homogeneous linear equations. In this case, it is guarantee
to have solutions.

Definition 4.8. A system of m homogeneous linear equations in n unknowns is in form:
a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

am1x1 + am2x2 + · · ·+ amnxn = 0
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Theorem 4.9. For a system of n homogeneous linear equations with n unknowns AX = 0:

1. AX = 0 has trivial solution (all 0) as its only solution if and only if |A| ≠ 0.

2. AX = 0 has a trivial solution and infinitely many non-trivial solutions if and only if |A| = 0.

There is a special use for augmented matrix. Note that when we represent system of linear equations in AX = B,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



x1

x2

...
xn

 =


b1
b2
...
bn

 =


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1



b1
b2
...
bn


If |A| ≠ 0, by performing row operations, we get that

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1



x1

x2

...
xn

 =


a′11 a′12 . . . a′1n
a′21 a′22 . . . a′2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn



b1
b2
...
bn


We know that AX = IB can become IX = A−1B. It just so happen that we just obtained the inverse of A! Therefore,

Theorem 4.10. Given an invertible matrix A. By performing row operations, we can get that(
A I

)
∼

(
I A−1

)
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