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This is a rewritten version of my lecture notes named "MATH 2431: Honor Probability”. I realised that the ordering of topics is a
bit of a mess and there are some missing topics that will probably be necessary for future courses.

My plan is to make this notes a mixture of MATH 2421 (Probability) and MATH 2431 (Honor Probability). Again, if you can find
any typos, you are already pretty good at the topics or you have good eyes. ;)

Please note that all proofs that may be combinatorial proofs are omitted.

Notations Meaning
Ny Set of positive integers
N Set of natural numbers
Z Set of integers
Q Set of rational numbers
R Set of real numbers
0 Empty set
Q Sample space / Entire set
w Outcome Abbreviations Meaning
F,G,H o-field / o-algebra CDF Cumulative distribution function
A,B,C,--- Events JCDF Joint cumulative distribution function
AL Complement of events PMF Probability mass function
P Probability measure JPMF Joint probability mass function
X Random variable PDF Probability density function
B(R) Borel o-field of R JPDF Joint probability density function
fx PMF/PDF of X PGF Probability generating function
Fx CDF of X MGF Moment generating function
14 Indicator function JMGF Joint moment generating function
E Expectation CF Characteristic function
P Conditional expectation JCF Joint characteristic function
u,v,w,: Vector ii.d. independent and identically distributed
A B,C, Matrix WLLN Weak Law of Large Numbers
X Random vector SLLN Strong Law of Large Numbers
X Sample mean of X CLT Central Limit Theorem
S2 Sample variance of X BCI Borel-Cantelli Lemma I
Gx Probability generating function of X BCII Borel-Cantelli Lemma 1T
Mx Moment generating function of X i.o. infinitely often
10) CF / PDF of X ~ N(0,1) f.o. finitely often
o CDF of X ~ N(0,1) a.s. almost surely
(a) Notations (b) Abbreviations

‘ Definition 0.1. This is definition. ‘

‘ Remark 0.1.1. This is remark. ‘

’ Lemma 0.2. This is lemma. ‘

Proposition 0.3. This is proposition.

‘ Theorem 0.4. This is theorem. ‘

‘ Claim 0.4.1. This is claim. ‘

Corollary 0.5. This is corollary.

Example 0.1. This is example.
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Chapter 1

Combinatorial Analysis

1.1 Probabilities

In our life, we mostly believe that the future is largely unpredictable. We express this belief in chance behaviour and assign quantitative
and qualitative meanings to its usages. Therefore, we create the concept of ” probability”, which tries to create a numerical descriptions
of how likely an event would occur.

Definition 1.1. Probability is a numerical measurement of how likely an event would occur.

If we want to determine the probability, we can use random experiments.

Definition 1.2. Experiment is a process that has a random outcome.

Example 1.1. Example of an experiment:
1. Randomly picking a number from 1 to 10

2. Randomly toss a coin

The most basic way to find a probability is by counting.

Theorem 1.3. (Fundamental Principle of Counting) Suppose that m; represents the number of outcomes of the i-th event.
The total number of outcomes of n independent events is the product of the number of each individual event:

n
[[m:
i=1

Example 1.2. Assume that we choose a president and a vice-president from 30 people. By the Fundamental Principal of Counting,

the total number of possible outcomes is:
30 x 29 = 870

Sometimes, we want to focus on how many ways we can arrange a set of objects.

Definition 1.4. Given a set with n distinct elements.
1. Permutation of the set is an ordered arrangement of all elements of the set.

2. If k£ < n, k-permutation of the set is an ordered arrangement of k elements of the set.

Remark 1.4.1. The n-permutation is just the regular permutation.

Remark 1.4.2. If we want to find the total number of permutations, we can see it as finding the number of outcomes for putting
one object into the 1st position, 2nd position, and so on.

Example 1.3. Given a set {1, 2, 3}.
1. The ordered arrangement (3,1,2) is a permutation of the set.

2. The ordered arrangement (3,2) is a 2-permutation of the set.
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We have a formula to find the number of permutations.

Theorem 1.5. Let n and k be integers with 0 < k < n. The number of k-permutations of a set with n distinct elements, denoted
by P, can be obtained by:
n!

P = (n—k)!

We also have cases when two ends of the ordered arrangement are connected together. When we want to find the number of
arrangements for putting people into seats of circular table, rotating clockwise or anti-clockwise should be considered as same
arrangement.

Theorem 1.6. Given a set with n distinct elements. The number of arrangements of elements into the circle is:

(n—1)!

1.2 Combinations

Now, assume that we don’t care about the ordering of chosen objects. We only want to choose k objects from n objects.
Then we have the following definition.

Definition 1.7. If k < n, k-combination of a set with n distinct elements is an unordered arrangement of k£ elements of the set.

Theorem 1.8. Let n and k£ be integers with 0 < k£ < n. The number of k-combination of a set with n distinct elements, denoted

by Cy or (}), can be obtained by:
on— (™) n!
FT\k) T kl(n—k)
Proof.

We know that the number of permutations of k objects is k! and the number of ordered arrangement of choosing k objects from n
objects is:

n!
(n—k)!

We don’t care about the order. The number of unordered arrangement of choosing k objects from n objects would be:

n\ P n!
k) k' El(n—k)

Remark 1.8.1. By convention, when n is non-negative integers and k < 0 or k > n, we define:
n
(r) -
r

Corollary 1.9. Let n be integers. For all integers k& with 0 < k < n, we have:

(0 =(20)

(nnk;> - (nk)!(Z!nJrk)! - k!(nn! o) (Z)

P =

We can immediately derive the following corollary.

Proof.




1.2. COMBINATIONS

From here, we will provide some important combinatorial identities that could be very useful.

Theorem 1.10. (Pascal’s Identity) Let n and k be integers with 0 < k < n. Then:

O-G+(

Proof.
From the right-hand side, we have:

n—1 n—1\ (n—1)! n-1!"  (E+n—k)(n-1)! n! (n
(k—1)+< k >(l<;—1)!(n—k:)!+k!(n—k:—1)! M — k)| k;!(n—k)!(k;)

We have the famous Binomial Theorem.

Theorem 1.11. (Binomial Theorem) Let n be a non-negative integer. We have:
(.T + y)n _ i n xkyn—k
k=0 E

where for all &, (Z) is called the binomial coefficient.

Corollary 1.12. Let n be a non-negative integer. We have:

Proof.
Using the Binomial Theorem and substitute x = 1 and y = 1, we have:

o1y =3 <Z>(1)k(1)n_k - (Z>

k=0

Corollary 1.13. Let n be a positive integer. We have:

o)

k=0
Proof.
Using the Binomial Theorem and substitute £ = —1 and y = 1, we have:
n n
n n
0= (-1+1)"= DR =) (—1)F
L= 3 () = e ()

Corollary 1.14. Let n be a positive integer. We have:

Proof.
Using the Binomial Theorem and substitute £ = 2 and y = 1, we have:

3=(24+1)" = z”: (Z) @M = zn:2k (Z>

k=0
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Using the Binomial Theorem, we can prove the following identity.

Theorem 1.15. (Vandermonde’s Identity) Let m,n,r € Z with 0 <7 < m and 0 < r < n. We have:
m—+n - m n
") =26
k=0
Proof.

Assume that we want to find (z + y)™*". Using the Binomial Theorem, we have:

S = (S (1)) (S ()

r=0 i

S50

3

=
3

1+n
0<7° k> (Z>x’“y’”+” " (Setting r =i+ j and k = j)

If we look at each binomial coefficient, we can find that:

("7)-5(")6)

O
Corollary 1.16. Let n be a non-negative integer. We have:
()-20)
n) = k
Proof.
Using the Vandermonde’s Identity and substitute m = n and r = n, we have:
()20 -2 0
n = \n— k) \k — k

O

Theorem 1.17. Let n and r be integers such that 0 < r < n. We have:

Proof.
We can use the Pascal’s Identity on the right-hand side.

()= ()= 2 0+ () -0+ (1) C)

1=7



1.3. MULTINOMIAL 9

1.3 Multinomial

What about when some objects are in the same type?

Theorem 1.18. Given a set with n elements. If we choose n; objects to i-th group for all 7 and ny + ny + - - - + nx = n, then the

number of different combinations, denoted by (n1 nz" nk), is:

( n ) n!
N1, Mo, Nk nilng! -+ ny!

Remark 1.18.1. When you choose k objects from n objects, you may consider it as classifying k objects as chosen and remaining
n — k objects as not chosen.

We have a more generalized version of Binomial Theorem.

Theorem 1.19. (Multinomial Theorem) Let n be a non-negative integers. We have:

n n ... n
(n1,m2, ,ng)mi+net-Fng=n 1702, Tk

(14 32+ + )" = Z < n )x’illxgz...x'gk

where (n1,n9,- -+ ,ny) are all non-negative integer-valued vectors.

The formula is way too complicated! Luckily, we have a formula to know how many terms the above equation has.

Theorem 1.20. There are (”jﬁ;l) distinct non-negative integer-valued vectors (z1, 2, - ,x,) that satisfies:
T+ X2+ -+ Tr=n

where z; > 0 for all <.

We can also use the above to find number of ways to put n objects into r boxes. If in addition every box must have an object, we
have the following.

Theorem 1.21. There are (::11) distinct positive integer-valued vectors (1, s, - ,x,) that satisfies:
1 +xo+ -+ =n

where z; > 0 for all <.

Example 1.4. Suppose that a cookie shop has 4 different kinds of cookies. How many different ways can 6 cookies be chosen?
Number of ways to choose 6 cookies is the number of 6-combinations with repetition from set with 4 elements, which is:

(-0




10

CHAPTER 1.

COMBINATORIAL ANALYSIS



Chapter 2

Events and their probabilities

We have now understood how we can find the number of possibilities. However, we still haven’t started rigorously formalize probability.
Therefore, we need to define some basic terminologies around probability.

2.1 Fundamentals

We start with some basic terminology. Many statements in probability take the form of ”the probability of event A is p”, which the
events usually include some of the elements of sample space.

Definition 2.1. These are the basic object of probabilities.
1. Experiment is an activity that produces distinct and well-defined possibilities called outcomes, denoted by w.
2. Sample space is the set of all outcomes of an experiment, denoted by €.
3. Event is a subset of the sample space and is usually represented by A, B,C,---.

4. Outcomes are called elementary events.

Example 2.1. Examples of sample space:
1. Die rolling: Q ={1,2,3,4,5,6}
2. Life time of bulb: Q = [0, c0)
3. Two coins flipping: Q = {(H, H), (H,T),(T,H),(T,T)}

Remark 2.1.1. It is not necessary for all subset of 2 to be an event. However, we do not discuss this issue for the moment.

Example 2.2. Events for dice rolling: Odd (A = {1, 3,5}), Even (A = {2,4,6}), - --

Remark 2.1.2. If only the outcome w = 2 is given, then there exists many events that can obtain this outcome. E.g. {2}, {2,4},

2.2 Event Operations

We can perform operations to events, similar to sets.

Definition 2.2. Given two events A and B.
1. Union of A and Bisanevent AUB={weQ:we Aorwe B}.
2. Intersection of A and Bisanevent ANB={weQ:we Aand we B}.
3. Complement of A is an event containing all elements in sample space () that is not in A. It is denoted by AC,
4. Complement of Bin Aisanevent A\B={weQ:we Aand w¢ B}.
5. Symmetric difference of A and B is an event AAB={w e Q:we AUB and w ¢ AN B}.

11
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We also need to define inclusion of all outcomes of events in another events.

Definition 2.3. For any two events A and B, if all of the outcomes in A are also in B, then we say A is contained in B, written
as AC Bor B D A.

Remark 2.3.1. If A C B, the occurrence of A necessarily implies the occurrence of B.

We can describe the events in a sample space.

Definition 2.4. Given a sequence of events Ay, Ag,- -, Ag.
1. For any i and j, if A; N A; =0, then A; and A, are called disjoint.
2. If A;NA; =0 for all i and j, the sequence of events is called mutually exclusive.

3. If Ay UAs U---U A, =€, the sequence of events is called exhaustive.

4. If the sequence is both mutually exclusive and exhaustive, it is called a partition.

We have some fundamental laws for event operations.

Theorem 2.5. Let A, B, C be any three events and A, Ao, --- , Ax be a sequence of events.
1. Commutative Law: AUB=BUA ANnB=BnA
2. Associative Law: AU(BUC)=(AUB)UC ANn(BNnC)=(AnB)nC
3. Distributive Law: AU(BNC)=(AUB)N(AUC) AN(BUC)=(ANB)U(ANC)

4. De Morgan’s Law: (UF_; 4;,)¢ =nk_ AL (Nk_ A;)8 = Uk AC

We can also split any event into an union of two events.

Lemma 2.6. For any events A and B, we have:

A=(AnB)uU(AnBY

Proof.
By distributive law,
(ANB)U(ANBY =AnBUBY=4n0=4

We may start defining probability. Let’s start with defining a collection of subsets of the sample space.

Definition 2.7. Field F is any collection of subsets of €2 which satisfies the following conditions:
1. If A€ F, then A® € F.
2. If A,Be F,then AUB € F and AN B = (A®UB% € F. (Closed under finite unions or intersections)
3.0 Fand Q=AUAl e F.

We are more interested on o-field that is closed under countably infinite unions.

Definition 2.8. o-field (or o-algebra) F is any collection of subsets of {2 which satisfies the following conditions:
1. If A€ F, then A% € F.
2. If Ay, Ay, --- € F, then ;o A; € F. (Closed under countably infinite unions)

3.0cFand Q=AuAby...c F.

Remark 2.8.1. All o-fields are fields. The converse are not necessarily true.

Remark 2.8.2. From this point onwards, F represents the o-field.

Example 2.3. Smallest o-field: F = {0, 2}
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Example 2.4. If A is any subset of 2, then F = {0, A, AC Q} is a o-field.

Example 2.5. Largest o-field: Power set of Q: 22 = {0, 1} := {All subsets of 2}
When  is infinite, the power set is too large a collection for probabilities to be assigned reasonably.

Remark 2.8.3. These two formulae will be very useful.

oo

@h=U o+ o] o= o0+ 7]

n=1

2.3 Probability measure and Kolmogorov axioms

Now that we define some fundamental terminologies, we can finally define probability.

Definition 2.9. Measurable space (2, F) is a pair comprising a sample space € and a o-field F.
Measure p on a measurable space (0, F) is a function p : F — [0, oo] satisfying:

1. p(d) =o.
2. If A; € F for all i and they are disjoint, then u({J;o, 4;) = > ooy 1(A;). (Countable additivity)

Probability measure P is a measure with P(Q2) = 1.

You may ask, "Isn’t it just probability?” The probability that we know is indeed a probability measure, which we will define soon.
However, there are in fact other measures that satisfy the definition of probability measure. E.g. Risk-neutral measure.
The following measures are not probability measures.

Example 2.6. Lebesgue measure: u((a,b)) =b—a, Q=R

Example 2.7. Counting measure: p(A) = #{A}, @ =R

We can combine measurable space and measure into a measure space.

Definition 2.10. Measure space is the triple (2, F, 1), comprising:
1. A sample space Q2
2. A o-field F of certain subsets of
3. A measure p on (2, F)

Probability space (2, F,P) is a measure space with probability measure PP as the measure.

Kolmogorov axioms of probability uses axioms to formalize probability.

Definition 2.11. (Kolmogorov axioms of probability) Let (2, F,P) be a probability space, with sample space 2, o-field F,
and probability measure P.

1. The probability of an event is a non-negative real number. For all £ € F,

P(E) € R P(E) >0

2. The probability that at least one of the elementary events in the entire sample space will occur is 1.

P(Q) = 1

3. Any countable sequence of disjoint events E7, Fs, - - - satisfies:

¢ (05) S

By this definition, we call P(A) the probability of the event A.
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Example 2.8. We consider a coin flip. We can find that sample space Q = {H, T} and o-field F = {0, H,T,Q}. Let P(H) = p
where p € [0,1]. We define A = {w € Q:w = H}. Then we can get:

0, A=10
s A={H}
1 A=0Q

)

Ifp= %, then the coin is fair.

Example 2.9. We consider a die roll. We can find that sample space Q = {1,2,3,4,5,6} and o-field 7 = {0, 1}?. Let p; = P({i})
where ¢ € Q. For all A € F,
P(4) = Zpi

i€EA

If p; = § for all i, then the die is fair. P(4) = “2%'.

The following properties are important and build a foundation of probability.

Lemma 2.12. Basic properties of P:
1. P(AY) =1 —P(A).
2. If A C B, then P(B) = P(A) + P(B\ A) > P(A).
3. P(AUB) =P(A) + P(B) —P(AN B). If A and B are disjoint, then P(AU B) = P(A) + P(B).
4. (Inclusion-exclusion formula) For any set of events {41, -, A, },

P <Cj Ai> => P(A) - > PANA)+ -+ (-1)"PA1 N AN N Ay)

i<j

Proof.
1. AUAL =Qand AN A% =0 — P(AU A%) = P(A) + P(A") =1
2. ACB=B=AU(B\A) = P(B)=P(A)+P(B\ A)
3. AUB=AU(B\A) = P(AUB) =P(A)+P(B\A) =P(A)+P(B\ (AN B)) =P(A) + P(B) —P(AN B)
4. By induction. When n = 1, it is obviously true. Assume it is true for some positive integers m. When n =m + 1,

i=1 =1

i=1

m—+1 m m
=> P(A)— Y PANA)+-(-1)"P (ﬂ Ai> —P (U AN Am+1>

1<i<j<m i=1 i=1
m+1 m+1
=> P(A) - > PANA)+-+ ()P ( N A,)
i=1 1<i<j<m+1 i=1
Therefore, by induction, the Inclusion-exclusion formula is true for any set of events {Ay,---, A, } for any n € N,.

We recall the continuity of function f: R — R. f is continuous at some point « if for all z,,, z,, — x when n — co. We have:

lim f(za) = f (lim @) = f(2)

n— oo

Similarly, we say a set function pu is continuous if for all A,, with A =lim,,_,, A,,, we have:

S ) = Jim 4.) = )
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Remark 2.12.1. Given a sequence of sets A,,. We have two types of set limit:

limsup A, = lim sup A,, = ﬂ U Ay ={w € Q:w e A, for infinitely many n}
n— o0 n—=00 ;/>n Sl P
hnn_1>1£f A, = nh_)néo nigfn A, = Ql O Ay ={w € Q:w e A, for all but finitely many n}

Apparently, liminf, . A, C limsup,,_, ., 4n

Definition 2.13. We say a sequence of events A,, converges and lim,,_, ., A, exists if:

limsup A,, = liminf A4,
n—o0 n—00

Given a probability space (Q, F,P). If Ay, Ag,--- € F such that A = lim,,_,o, A, exists, then:

lim P(A,) :}P’( lim An>

n— oo n—oo

From the definition, we can get the following important lemma.

Lemma 2.14. If Ay, Ay, - are an increasing sequence of events (A; C As C ---), then:

o0

P(A)zIE”(U Ay,

n=1

Similarly, if Ay, Ao, --- are a decreasing sequence of events (A; D Ay D ---), then:

Proof.
For Al - A2 c-- i let Bn = An \An—l

P (D An> =P (D Bn> = f: P(By) = lim znj P(By) = lim P ( CJ Bm> = lim P(4,)

m=1

For Ay D Ay D -+, we get A = Uiz, AE and A% C A8 C .... Therefore,

P (ﬂ An> =1-P (U Aﬁ) =1— lim P(A%) = lim P(A,)
n—oo n—oo
n=1 n=1

We can give some terminology to some special probabilities.

Definition 2.15. Event A is null if P(A) = 0.

Remark 2.15.1. Null events need not to be impossible. For example, the probability of choosing a point in a plane is 0.

Definition 2.16. Event A occurs almost surely if P(4) = 1.
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2.4 Conditional probability

Sometimes, we are interested in the probability of a certain event given that another event has occurred.

Definition 2.17. If P(B) > 0, then the conditional probability that A occurs given that B occurs is:

P(AN B)

P(4IB) = —5 5

Remark 2.17.1. For any event A, P(A) can be regarded as P(A|Q).

Remark 2.17.2. When P(E) = P(E|F), E and F are said to be independent.

Example 2.10. Two fair dice are thrown. Given that the first shows 3, what is the probability that the sum of number shown
exceeds 67

3
TR 1
P(Sum > 3|First die shows 3) = 3¢ = —
6
Lemma 2.18. For any B € F, if P(B) > 0, P(-|B) is a probability measure on F.
Proof.
We prove from definition of probability measure.
1. We prove P(|B) = 0. Since P(B) > 0,
P@NB) P
]P B == = =
OB ="5m) ~ e
2. We prove P(Q2|B) = 0. Since P(B) > 0,
P(QNB P(B

P(B)  P(B)
3. We prove the countable additivity. Since P(B) > 0, for any disjoint sequence of events A; € F for all 4,

B 1 - 1 o0 o0 o
P(i_UlAi B)WP<HAmB>P( ) (U(A ﬂB) ; P(A;iNB) =Y P(4]B)

i=1 i=1
Therefore, for any B € F, if P(B) > 0, then P(:|B) is a probability measure. O

We may create a series of probability based on previous events. This is useful if you are dealing with a sequence of events in time.

Lemma 2.19. (General Multiplication Rule) Let A, Ay, --- , A, be a sequence of events. We have:

(ﬂ A; ) = P(A1)P(A2|A1)P(A3]| A N Ag) - - P(Ap|A1 N AN N Ap_q)

Proof.

P(A))P(As|A1)P(A3|A1 N Ag) - P(A A1 NAN - NA,_1) =P(A; N A)P(A3]A1 N As) - P(Ap]A1 N AN - N A1)
=P(A;NAsNA3) - P(AJA1NA3N---NA,_q)

- (0)

It is obvious that a certain event occurs when another event either occurs or not occurs.

Lemma 2.20. For any events A and B such that 0 < P(B) < 1,

P(A) = P(A|B)P(B) + P(A|B%)P(B")

Proof.

A= (ANB)U (AN B = P(A) = P(AN B) + P(AN B®) = P(A|B)P(B) + P(A|B®)P(B®)
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Example 2.11. In medical cases, we usually identify the efficiency and effectiveness of a type of medical test. We have a name
for each types of results:

1. True positive (TP): Sick people correctly identified as sick (Found positive and correct)
2. False positive (FP): Healthy people incorrectly identified as sick (Found positive but incorrect)

3. True negative (TN): Healthy people correctly identified as healthy (Found negative and correct)

4. False negative (FN): Sick people incorrectly identified as healthy (Found negative but incorrect)

There are some cases when multiple events allow certain event to occur.

Lemma 2.21. (Law of total probability) Let {Bj, Bs, - , B,} be a partition of 2. Suppose that P(B;) > 0 for all i. Then:

n

P(A) = ) P(A|B)B(B;)

i=1

Proof.

PM):MAHQ):P(AOOJBJ):P(CﬂAﬂBé)ziiMAﬂBgzﬁiMAwmw&)

i=1 i=1
O
At this point, we can finally prove a theorem that is used in a lot of field outside of mathematics. Imagine that you know the

probability of getting each type of disease and the probability of having a specific symptom if you have the disease. If a patient have
the symptom, what is the chance that he gets the type of disease you are considering?

Theorem 2.22. (Bayes’ Theorem) Suppose that a sequence of events A, Ay, -, A, is a partition of sample space. Assume
further that P(A4;) > 0 for all i. Let B be any event, then for any i:

P(B|Ai)P(A;)

PAIB) = S BB 4 )P(4r)
Proof.
_P(A4,NB) _ PBJA)P(A) _ P(B|A)P(A)
IP)(Az’|B> = IP’(B) - [P(B) o Z/:l P(B|Ak)P(Ak)

2.5 Independence

In general, probability of a certain event is affected by the occurrence of other events. There are some exception.

Definition 2.23. Two events A and B are independent if P(A N B) = P(A)P(B). It is denoted by A 1 B.

Remark 2.23.1. If events A and B are independent and AN B = (}, then either P(A) = 0 or P(B) = 0.

It is relatively simple to prove the following.

Lemma 2.24. For any two events A and B, if A Il B, then:

P(A|B) = P(A)
Proof.
plajp) - LoD 2 - EEB) gy
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Proposition 2.25. If events A and B are independent, then so are A 1L B and A® 11 BC.

Proof.

P(AN B%) =P(A) — P(AN B) = P(A) — P(A)P(B) = P(A)(1 — P(B)) = P(A)P(B)
Therefore, A 1L BC and also A% 1 BC. O

Proposition 2.26. If events A, B, C are independent, then:
1. AUl (BUCQC)

2. AL (BNC)

Proof.
1. Using the properties of probability,

P(AN(BUC))=P((ANB)U(ANCQC))

=P(ANB)+P(ANC)-P(ANBNC)
(AP(B) + P(A)P(C) — P(A)P(B)P(C)
(

=
EA
-
Q

Sometimes, we may deal with more than 2 events. We have a more specific way to describe their relationship.

Definition 2.27. Given a family of events {A; : i € I} for some I C N;.
1. If P(A; N A;) = P(A;)P(A;) for any i # j, it is pairwise independent.

2. If additionally that for all subsets J of I:
P (ﬂ AZ-) =[[P4)
ieJ ieJ

then it is mutually independent.

Remark 2.27.1. Usually, when we say multiple events are independent, we are saying they are mutually independent.

1 -,6} and F = 29

Example 2.12. Roll for dice twice: Q ={1,2,--- ,6} x
(2, (4,3),(5,2),(6,1)}.
, 3 4

{1,2,-
Let A be event that the sum is 7. Event A = {(1,6), (2,5), (374)
) (

Let B be event that the first roll is 4. Event B — {(4, 1), (4,2), (4,3), (4,4), (4,5), (4,6)}
Let C' be event that the second roll is 3. Event C = {(1, 3), (2,3), (3,3), (4,3), (5,3), (6, 3)}
P(AN B) = P((4,3)) = % - é (é) — P(A)P(B)
P(BNC) =P((4,3) = 35 = 5 (é) — P(B)B(C)
PANC) =P(4,3) = 35 = (5 ) =PAP©)
P(AN BN C) = P((4,3)) = 55 # B(APBIR(C)

Therefore, events A, B and C are pairwise independent, but not mutually independent.
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2.6 Product space

There are many o-fields you can generate using a collection of subset of 2. However, many of those may be too big to be useful.
Therefore, we have the following definition.

Definition 2.28. Let A be a collection of subsets of 2. The o-field generated by A is:

o(A)=(1¢

ACG

where G is also a o-field.

Remark 2.28.1. o(A) is the smallest o-field containing A.

Example 2.13. Let Q = {1,2,---,6} and A = {{1}} C 2% o(A) = {0,{1},{2,3,--- ,6},0Q}

Corollary 2.29. Suppose (F;);cs is a system of o-fields in Q. Then:

ﬂ]—‘i:{AEQ:Ae}}foralliel}
i€l

Now that we know which o-field we should generate, we can finally combine two probability spaces together to form a new probability
space.

Definition 2.30. Product space of two probability spaces (Q1, F1,P1) and (2, F2,P2) is the probability space (21 x Q2,G,P12)
comprising:

1. a collection of ordered pairs Q1 X Qs = {(w1,ws) : w1 € Qy,we € N}
2. a o-algebra G = o(F; x Fy) where Fy x Fo = {A; x As: Ay € Fy, Ay € Fo}
3. a probability measure P15 : F; X Fo — [0, 1] given by:

P12(A; x Ag) = P (A1)P2(As)

for A, € ]:1,142 € Fo.

Example 2.14. Assume that we want to consider the probabilities of getting a head in coin flipping and getting a 5 in die tossing
at the same time. We already know that:

O ={H,T} Fi={0,{H},{T}, M} Py =P(-|) (Coin flipping)
0y ={1,2,3,4,5,6} Fp =28 Py = P(-|Q2) (Die tossing)
The probability space we are considering is the produce space (21 x Q2, G, P12), where:
M x Q= {(H7 1)7 (Ha 2)7 (H7 3)7 (Ha 4)7 (H7 5)7 (Ha 6)7 (Tv 1)a (T7 2)7 (Ta 3)7 (T7 4)3 (Ta 5)7 (Ta 6)}

G =2°
P12 = P(-| x Q2) = P(|Q)P(-|2s)
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Chapter 3

Random variables and their distribution

3.1 Introduction of random variables

Sometimes, we are not interested in an experiment itself, but rather the consequence of its random outcome. We can consider this
consequence as a function which maps a sample space into a real number field. We call these functions "random variable”.

Definition 3.1. Random variable (r.v.) is a function X : 2 — R with the property that for any = € R,

X (~o0,2)) ={we: X(w) <2} eF

Remark 3.1.1. More generally, random variable is a function X with the property that for all intervals A C R,
X1 A)={weQ: X(w) €A} e F

We say the function is F-measurable. Any function that is F-measurable is a random variable.

Remark 3.1.2. All intervals can be replaced by any of following classes:

—_

. (a,b) for alla < b
2. (a,b) foralla <b
3. [a,b) foralla < b
4. [a,b] for all a < b
5. (—oo,z] for all z € R
It is due to following reasons:
1. X! can be interchanged with any set functions.

2. F is a o-field.

Claim 3.1.1. Suppose X ~!(B) € F for all open sets B. Then X ~(B’) € F for all closed sets B’.

Proof.
For any a,b € R,

X Ya,b]) = X! (ﬁ (a—;,b—ki)) = ﬁ X! ((a—i7b+i)> eF

n=1 n=1

21
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Example 3.1. A fair coin is tossed twice. Q = {HH,HT,TH,TT}. For all w € Q, let X(w) be the number of heads.

0 r <0
0, w € {TT} ;
2, wE{HH} 0 ’ ) ; xe[Q,OO)

If we choose F = {0}, 2}, then X is not a random variable.

We can create new random variables from X.

Lemma 3.2. Given a random variable X and ¢,d € R.
1. f Y =cX +d, then Y is a random variable.

2. If Z = X2, then Z is a random variable.

Proof.
Let y € R and z € Rxo.

1. If ¢ > 0, then:

Y (o0, y)) ={we Q:Y(w) <y} = {WEQ:X(W) < y;d} . F

If ¢ =0, then:
DeF, y<d

Y1((—oo,y]):{w€Q:d§y}={Qe}_ y>d

If ¢ < 0, then:

Y (o0, y)) ={weQ:Y(w) <y} = {MEQ:X(W) > y;d} . F

Therefore, for any ¢,d € R, Y = ¢X + d is a random variable.

2. We have:
Z7H[0,2]) ={weN:0< Z(w) <2} ={weN:0< X(w) <Vz}EF

Therefore, Z = X? is a random variable.

Before we continue, it is best if we know about Borel set first.

Definition 3.3. Borel set is a set which can be obtained by taking countable union, intersection or complement repeatedly.
(Countably many steps)

Definition 3.4. Borel o-field of R is a o-field B(R) that is generated by all open sets. It is a collection of Borel sets.

Example 3.2. {(a,b),[a,b],{a},Q,R\ Q} C B(R). Note that closed sets can be generated by open sets.

Remark 3.4.1. In modern way of understanding, (Q2, F,P) E (R,B,Po X~ 1)

Claim 3.4.1. Po X! is a probability measure on (R, B).

Proof.
1. Forall Be B,Po X }(B) =P({w: X(w) € B}) € [0,1]

PoX 1) =P({w: X(w) € 0}) =P(B) =0
PoX 'R)=P({w: X(w) eR}) =P(Q) =1

2. For any disjoint By, Bo,--- € B,

Pox-! (G Bi) =P (G X*(BZ-)) =S R B) = Y PexTH(B)
. i=1 i=1

i=1
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Remark 3.4.2. We can derive the probability of all A € B.

P([a, b]) = P((—o00,d]) — P((—00,a))

—rmin -2 (-]

3.2 CDF of random variables

Every random variable has its own distribution function.

Fx(z) =P(X <z):=Po X !((—o0,z])

Definition 3.5. (Cumulative) distribution function (CDF) of a random variable X is a function Fx : R — [0, 1] given by:

Example 3.3. From Example

0,

1 3
P(w):Z Fx(z)=P(X <z)=13
1)

1

z <0
0<z<l1
1<x<?2
xr > 2

Lemma 3.6. CDF Fx of a random variable X has the following properties:
1. lim, oo Fix(2) = 0 and lim,_, Fix(x) = 1.
2. If z <y, then Fx(z) < Fx(y).

3. Fx is right-continuous (Fx(z + h) — Fx(z) as h — 0)

Proof.
1. Let B, ={weQ: X(w) <—n}={X <-—n}. Since By DBy 2---, by Lemma
M Px(z) =B (Jim B,) = P(0) =0

Alternative proof:

lim Fx(z) = lim Po X '((—o0,z]) = lim Po X '((—o0, -

r——00 T—>—00 n— oo

Let Cp, ={w e Q: X(w) <n} ={X <n}. Since C; CC C ---, by Lemma [2.14]

lim Fy(z) =P ( lim on) =P(Q) =1

Tr—r00 n—oo

Alternative Proof:

lim Fy(z) = lim Po X }((—o0,z]) =Po X }(R) =1

r—00 T—> 00

2. Let A(z) = {X <z}, A(z,y) = {x < X < y}. Then A(y) = A(xz) U A(z,y) is a disjoint union.

Fx(y) = P(A(y)) = P(A(z)) + P(A(z,y)) = Fx(z) + P(x < X <y) = Fx(z)

3. Let B,, = {wEQ:X(w) §x—|—%}. Since By D By D , by Lemma
hm Fx(x+h) = (ﬂB) (lim Bn):]P’({wéQ:X(w)gx}):FX(x)
n— o0

Alternative Proof:

1
lim Fx(z4h) = lim Po X '((—oco,z+h]) = lim Po X! ((—oo,x+D =Po X ((—00,2]) = Fx(x)
h—0t h—0t n

n—oo
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Remark 3.6.1. I is not left-continuous because:

hli)r{)1+ Fx(z—h) = lim Po X1 <(—oo, T — ;)) =Po X ((—00,2)) = Fx(z) —Po X '({z})

Lemma 3.7. Let F'x be the CDF of a random variable X. Then
1. P(X >z) =1-— Fx(x).

2. Pz < X <y) =Fx(y) — Fx(x).

Proof.
1. P(X >2)=PQ\{X <z2})=P(Q) —P(X <z)=1- Fx(z).
2. P(z < X <y) = P((X < y}\ {X < 2}) = P(X <) — P(X <2) = Fx(y) - Fx(a).
O

In some cases, we want to find a number where a specific percentage of outcomes go below it. This is very useful if you know that
the random variable follows a certain distribution.

Definition 3.8. The g-th quantile of a random variable X is defined as a number z, such that:

P(X <z)=q

3.3 PMF / PDF of random variables

We can classify some random variables into either discrete or continuous. This two will be further discussed in the next two chapters.

Definition 3.9. Random variable X is discrete if it takes value in some countable subsets {z1,x2,- -} only of R.
Discrete random variable X has probability mass function (PMF) fx : R — [0, 1] given by:

fx(z)=P(X =z) =PoX~'({z})

Remark 3.9.1. Some textbooks will use px (z) to mean PMF in order to prevent confusion with PDF.

Lemma 3.10. Relationship between PMF fx and CDF Fx of a random variable X:

L Fx(z)=>,<, fx(y)
2. fx(z) = Fx(z) — lim, ,,- Fx(y)

Proof.
1.
Fx(z)=P(X <z)= Z P(X =z;) = fo(y)

i, <z y<zx

2. Let B, = {x7%<X§x}. Since By D By D -+, by Lemmam

Fx(r) ~ lm_ Fx(y) =P (fj Bn> =P (nler;OBn) =P <{n1eréo (x - :L) <X< x}) =P(X = 1)
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This is problematic when random variable X is continuous because using PMF will get the result of fx(z) = 0 for all z. Therefore,
we would need another definition for continuous random variable.

Definition 3.11. Random variable X is called continuous if its distribution function can be expressed as:
x
FX(x):/ f(u)du z€R
— o0

for some integrable probability density function (PDF) fx : R — [0,00) of X.

Remark 3.11.1. For small § > O:

T+
Plx < X <z+6)=Fx(x+0) — Fx(z) :/ fx(u)du =~ fx(x)d

Remark 3.11.2. On discrete random variable, the distribution is atomic because the distribution function has jump discontinu-
ities at values x1, s, -+ and is constant in between.

Remark 3.11.3. On continuous random variable, the CDF of a continuous variable is absolutely continuous.
Not every continuous function can be written as ffoo fx(u)du. E.g. Canton function

Remark 3.11.4. It is possible that a random variable is neither continuous nor discrete.

3.4 JCDF of random variables

How do we deal with cases when there are more than one random variables?

Definition 3.12. Let X1, X5 : © — R be random variables. We define random vector X = (X1, X») : Q2 — R? with properties
X 1D)={we: X(w)=(X1(w),Xs(w)) €D} € F

for all D € B(R?).
We can also say X = (X3, X2) is a random vector if both X7, X5 : Q@ — R are random variables. That means:

X YB)eF

for all B € B(R),a=1,2.

Claim 3.12.1. Both definitions of random vectors are equivalent.

Proof.
By first definition, X "1(A; x As) € F. If we choose Ay = R,
XA xR) ={weQ: (X;1(w), Xo(w)) € 41 x R}
={we: Xj(w) e 41} N{w e Q: Xs(w) € R}
= X7 (A)
This means X is a random variable. Using similar method, we can also find that X5 is a random variable.

Therefore, we can obtain the second definition from the first definition.
By second definition, X; and X7 are random variables. Therefore,

Xﬁl(Al X AQ) = {w eQ: (Xl(w)7X2(W)) € A x AQ}
={weN: Xj(w)eA}N{weN: Xy(w) € As}
= XM AN XS Ay) e F

Therefore, we can obtain the first definition from the second definition.
Therefore, two definitions are equivalent. O

Remark 3.12.1. We can write Po X"}(D) =P(X € D) =P({w € Q : X(w) = (X;1(w), X2(w)) € D}).
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Of course, there is a distribution function corresponding to the random vector.

Definition 3.13. Joint distribution function (JCDF) Fx : R? — [0,1] is defined as

Fx(x1,22) = Fx, x,(z1,22) =Po X_l((—oo,xl] X (—00,x9]) =P(X; < 21, Xo < x9)

Remark 3.13.1. We can replace all Borel sets by the form [a1,b1] X [ag,b2] X -+ X [ay, by].

Joint distribution function has quite similar properties with normal distribution function.

Lemma 3.14. JCDF Fy y of random vector (X,Y’) has the following properties:
1. hm(m,y)ﬁ(foo,foo) FX7y(x,y) =0 and hm(a:,y)ﬁ(oo,oo) FX7y($,y) =1
2. If 1 < yp and z3 < Yo, then Fx y (z1,y1) < Fx v (z2,y2).

3. Fx,y is continuous from above, in that Fx y(z +u,y +v) = Fx y(z,y) as u — 0" and v — 0.

We can find the probability distribution of one random variable by disregarding another variable. We get the following distribution.

Definition 3.15. Let X,Y be random variables. We can get a marginal distribution (marginal CDF) by having:

Fx(z) = Po X~((—o0,a]) = P (X (=00, ]) Y ((~00,00))) = lim P (X~}((=o0,]) ¥ ((~00,9))) = lim Fx.v(z,7)

Y—>00

Joint distribution function also has its probability mass function and probability density function too.

Definition 3.16. Two random variables X and Y on (€, F,P) are jointly discrete if the vector (X,Y’) takes values in some
countable subset of R? only. The corresponding joint (probability) mass function (JPMF) f : R? — [0, 1] is given by

fX7y(1‘7y):]P)((X,Y):(x,y)):IPO(X,Y)il({J,‘,y}) FX,Y(x7y): ZZf(uvv) z,y €R

ulz vy

Remark 3.16.1.
fxy(@,y) =Fxy(zy) — Fxy(x",y) — Fxy(z,y" )+ Fxy(z ,y")

Remark 3.16.2. More generally, for all B € B(R?),

Po(X,Y)'(B)= Y fxy(u,v)

(u,v)EB

Definition 3.17. Two random variables X and Y on (2, F, P) are jointly continuous if the joint probability density function
(JPDF) f:R? — [0,00) of (X,Y) can be expressed as:

82 x Yy
Ixy(z,y) = a?ayFX,Y(%y) Fxy(z,y) = / / Ix,v (u,v) dudv z,yeR

Remark 3.17.1. More generally, for all B € B(R?),

M(X,Y)*(B):]P((X,Y)eB)://BfX,y(u,u)dudv

Example 3.4. Assume that a special three-sided coin is provided. Each toss results in head (H), tail (T) or edge (E) with equal
probabilities. What is the probability of having h heads, ¢ tails and e edges after n tosses?
Let H,,T,, E, be the numbers of such outcomes in n tosses of the coin. The vector (H,,T,, E,) satisty H, + T, + E, = n.

n!  (1\"
P((Hn, Tn, Er) = (h, t,€)) = hltle! (3>

Remark 3.17.2. It is not generally true for two continuous random variables X and Y to be jointly continuous.
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Example 3.5. Let X be uniformly distributed on [0,1] (fx(z) = 1p,17). This means fx(x) =1 when = € [0, 1] and 0 otherwise.
Let Y = X (Y (w) = X(w) for all w € Q). That means (X,Y) = (X, X). Let B={(z,y) : =y and z € [0,1]} € B(R?).
Since y = x is just a line,

Po(X,Y)(B)=1
//B fxy(u,v)dudv=0+#Po(X,Y) Y(B)

Therefore, X and Y are not jointly continuous.
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Chapter 4

Discrete random variables

4.1 Introduction of discrete random variables

Let’s recall some of the definitions on discrete random variable in previous chapter.

Definition 4.1. Random variable X is discrete if it takes value in some countable subsets {x1,x2,- -} only of R.
(Cumulative) distribution function (CDF) of discrete random variable X is the function Fx : R — [0, 1] given by:

Fx(z) =P(X <x)

Probability mass function (PMF) of discrete random variable X is the function fx : R — [0, 1] given by:

CDF and PMF are related by

Fx(z)= ) fx(x) fx(z) = Fx(z) — lim Fx(y)

. —z—
<z Y

Lemma 4.2. PMF fx : R — [0, 1] of a discrete random variable X satisfies:
1. The set of = such that fx(x) # 0 is countable.

2. >, fx(z;) =1, where 21, 29, - - are values of « such that fx(z) # 0.

We also recall the definition of joint distribution function and joint mass function.

Definition 4.3. For jointly discrete random variables X and Y, joint probability mass function (JPMF) fxy : R? — [0,1] is
given by

fX,Y(Ihy) :]P)((va) = (z,y)) :]PO(X,Y)fl({z,y}) FX,Y(zvy) = ZZf(uvv) z,y €R

ulz vy

Recall that events A and B are independent if the occurrence of A does not change the probability of B occurring.

Definition 4.4. Discrete random variables X and Y are independent if the events {X = z} and {Y = y} are independent for
all z,y. Equivalently, X and Y are independent if

1. P((X,Y) € Ax B) = P(X € A)P(Y € B) for all A, B € B(R).
2. Fxy(z,y) = Fx(z)Fy(y) for all z,y € R.

3. fxvy(z,y) = fx(z)fy(y) for all z,y € R.

29
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Claim 4.4.1. Three definitions are equivalent.

Proof.
We can get definition 2 from definition 1.

Fxy(z,y) =P(X <2,Y <y) =PX <2)P(Y <y) = Fx(2)Fy(y)
We can get definition 3 from definition 2.

Ixy(x,y) = Fxy(z,y) — Fx Y( Ty - Fxy(zy )+ Fxy(@,y7)
= Fx(x)Fy(y) — Fx(27)Fy(y) — Fx(z)Fy(y~) + Fx(z7)Fy(y™)
= (Fx(z) = Fx(27))(Fy(y) — Fy(y7)) = fx(@) fy (y)

We can get definition 1 from definition 3.

Po(X,Y) M ExF) = 3 far(@y) =33 fx@fry) = (Po XU E)PoY L (F))

(z,y)EEXF z€EFE yeF

Therefore, three definitions are equivalent. O

Remark 4.4.1. More generally, let X1, Xo,---, X,, : Q = R be discrete random variables. They are independent if
1. For all 4; € B(R),
Po (X17X2>"' aX’rL)_l(Al X A2 X X A’n) = HPOX;1

2. For all z; € R,

Fx) x5, X, (%1, T2, , %) = HFXj, ()

3. For all z; € R,
Fx1, X0, X0 (T1, T2y 70+ Tp) = HfX(xz)

Recall that we say A;, Ag,- -, A, are independent if for any I C {1,2,--- ,n}:

P (ﬂAZ) =[P4

i€l icl

Remark 4.4.2. From the definition, we can see that X 1l Y means that X }(E) 1L Y~1(F) for all E, F € B(R).

Remark 4.4.3. We can generate o-field using random variables by defining o-field generated by random variable X

o(X)={X"YE):EcBR)}C F

From the remarks, we can extend the definition of independence from random variables to o-fields.

Definition 4.5. Let G,H C F be two o-fields. We say G and H are independent if A Il B for all A€ G, B € H.

Remark 4.5.1. (X)) L o(Y) <= X 1LY

Theorem 4.6. Given two random variables X and Y. If X Il Y and we have two functions g,h : R — R such that g(X) and
h(Y') are still random variables, then g(X) 1L A(Y).

Proof.
For all A, B € B,

P((9(X), h(Y)) € A x B) = P(g(X) € A,h(Y) € B)
=P(X €{z:g(x) e A},Y € {y: h(y) € B})
=P(X e{z:g(x) € AHP(Y € {y : h(y) € B})
=P(g9(X) € A)P(h(Y) € B)

Therefore, g(X) 1L A(Y). O
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Remark 4.6.1. We assume a product space (€2, F,P) of two probability space (1, F1,P1) and (Qg, Fo, Ps).
Any pair of events of the form F; x 9 and Q; x E5 are independent.

]P)((El X Q2) N (Ql X E2)) = ]P)(El X EQ) = ]Pl(El)]P)Q(EQ) = P(El X QQ)]P)(Ql X Eg)

4.2 Conditional distribution of discrete random variables

In the first chapter, we have discussed the conditional probability P(B|A). We can use this to define a distribution function.

Definition 4.7. Suppose X,Y : 0 — R are two discrete random variables. Conditional distribution of Y given X = z for any
x such that P(X = z) > 0 is defined by
P(Y € | X =x)

Conditional distribution function (Conditional CDF) of Y given X = x for any « such that P(X = x) > 0 is defined by
Fy|x(ylz) =P(Y <y|X =)
Conditional mass function (Conditional PMF) of Y given X = x or any x such that P(X = x) > 0 is defined by

frix(ylz) =P(Y = y|X = 2)

Remark 4.7.1. By definition,
P(Y =y, X =x) PY =y, X =2x)

PX=2)  SE(XY)=()

fyrix(ylz) =

Remark 4.7.2. For any = € R, the conditional PMF fy|x(y|z) is a probability mass function in y.

Remark 4.7.3. If X and Y are independent, then fyx(y|z) = fy ().

Conditional distributions still have properties of original distribution.

Lemma 4.8. Given two discrete random variables X and Y. Conditional distributions have following properties:

L Fyix(ylz) = X2, <, frix(vlz)

2. fyix(ylz) = Fyx(ylz) — Fy;x(y~|z)

Proof.

1.
ZfY\X(U|$) = ZP(Y =v|X =z) =P(Y <y[X =2) = Fy|x(ylz)

v<y v<y

2. This is just Lemma [3.10

4.3 Convolution of discrete random variables

Finally, a lot of times, we consider the sum of the two variables. For example, the number of heads in n tosses of a coin. However,
there are situations that are more complicated, especially when the summands are dependent. We tries to find a formula for describing
the mass function of the sum Z =X +Y.

Theorem 4.9. Given two jointly discrete random variables X and Y. The probability of sum of two random variables is given
by:
PX+Y =2)=) fxyv(@z—2)=) fxy(z—y9)
T Yy
Proof.

We have the disjoint union:
{(X+y=2={J{X =a}n{y =2-2})
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At most countably many of its distributions have non-zero probability. Therefore,
PX+Y =2 = ZIP’(X::U,Y:Z—J:) :fo,y(z,z—z)

O

Definition 4.10. Convolution fxiy (fx * fy) of PMFs of two independent discrete random variables X and Y is the PMF of
X+Y:
fxiv(@)=P(X+Y =2)=) fx(@)fr(z—x) =) fx(z—y)fr()
z y

4.4 Examples of discrete random variables

We have some important examples of random variables that have wide number of applications.

Definition 4.11. Parametric distribution of a discrete random variable is a distribution where the PMF depends on one or
more parameters.

The following examples are some of the most useful distributions.

Example 4.1. (Constant variables) Let X : Q — R be defined by X (w) = ¢ for all w € Q. For all B € B,

0, Bn{c}=10

Fx(z)=PoX Y(B)= {1 B {c) = (e}

X is constant almost surely if there exists ¢ € R such that P(X = ¢) = 1.

Example 4.2. (Bernoulli distribution) X ~ Bern(p)
Let A € F be a specific event. A Bernoulli trial is considered a success if A occurs. Let X :  — R be such that

1, weA

0 CUGAG P(A):P(le):p ]P(AU):P(XZO)Zl—p

X(w) :1A(w) :{

Example 4.3. Let A be an event in F and indicator functions 14 : 2 — R such that for all B € B(R):

0, Bn{0,1}=0 0, Bn{0,1} =0
1, weda 1, JA% Bn{o,1} = {0} 1 JP(A%, BN{0,1} = {0}
lA(UJ)—{O’ wedt  O=9.7 poenon Pl B =1pw), Bn{0.1}={1)

Q, BO{O,].}:{O,].} 1, Bﬂ{oal}:{oal}

Then 14 is a Bernoulli random variable taking values 1 and 0 with probabilities P(A) and ]P’(AE) respectively.

Example 4.4. (Binomial distribution) Y ~ Bin(n, p)
Suppose we perform n independent Bernoulli trials Xy, X5,---, X,,. Let Y = X7 + X5 + - - + X, be total number of successes.

k
fy(k)=PY =k)=P <ZXi = k‘) =P{#{i: Xs =1} = k})

We denote A = {#{i : X; =1} = k} =, A, where 0 = (01,02,--- ,0,) can be any sequence satisfying #{i : o; = 1} = k and
A, = events that (X, X, -+, X,) = (01,02, ,04). Events A, are mutually exclusive. Hence P(A) =" P(A,).
There are totally (Z) different ¢’s in the sum. By independence, we have

]P)(Aa) = ]P)(Xl = 0'1,X2 =092, " 7Xn = O'n) = P(Xl = Ul)P(XQ = 0'2) . P(Xn = Un) Zpk(l —p)"_k

Hence, fy (k) = P(A) = (;)p*(1 —p)" "
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Example 4.5. (Trinomial distribution) Suppose we perform n trials, each of which result in three outcomes A, B and C, where
A occurs with probability p, B with probability ¢, and C with probability 1 — p — q. Probability of  A’s, w B’s, and n —r — w
C’s is

n

P(#Ar,#Bw,#Cnrw)( >prqw(1pq)"rw

rw,n—1r—w

Example 4.6. (Geometric distribution) W ~ Geom(p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be the probability of success and
W be the waiting time which elapses before first success.

P(W > k)= (1—p)* P(W =k)=P(W >k—1)—P(W > k) = p(1 — p)*!

Example 4.7. (Alternative Geometric distribution) Suppose we keep performing independent Bernoulli trials until the first success
shows up. Let p be the probability of success and W' be the number of failures before the first success.
1—p 1—p

P(W' = k) = p(1 — p)* W = —= V) = =5

Remark 4.11.1. Conventionally, when we consider the geometric distribution, we usually refer to the one related to waiting time
instead of number of failures.

Example 4.8. (Negative binomial distribution) W, ~ NBin(r, p)
Similar with examples of geometric distribution, let W, be the waiting time for the r-th success. For k& > r,

k—1

fur. ) =B, =) = (£

)pr(l —p)*r

Remark 4.11.2. W, is the sum of r independent geometric variables.

Example 4.9. (Poisson distribution) X ~ Poisson(\)
Poisson variable is a discrete random variable with Poisson PMF:

)\k Y

fx(k) = Zye k=0,1,2,-
for some parameter A > 0.
This is used for approximation of binomial random variable Bin(n, p) when n is large, p is small and np is moderate.

Let X ~ Bin(n,p) and A = np.

n

e Qoo b () (-2 - ) S5 - () -
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We have an interesting example concerning independence with Poisson distribution involved.

Example 4.10. (Poisson flips) A coin is tossed once and head turns up with probability p.
Let random variables X and Y be the numbers of heads and tails respectively. X and Y are not independent since

P(X=1Y=1)=0 P(X = 1)P(Y = 1) = p(1 — p) £0

Suppose now that the coin is tosses N times, where N has the Poisson distribution with parameter .
In this case, random variables X and Y are independent since

P(X=2,Y=y) =P(X=2,Y =gy|N =z +y)P(N =z +) = (m . y)pm Cpp 2T QRO

(x+y)! xly!
MX:@MYZQ:XﬁaexwanNzniﬁwszzﬁMNzﬁ
_ i a3 ifa:)\i = . ‘ J—y y)\J -
E;QJp(lm ﬂeA2;<Qp (1*mjﬁ€A

_ 00 (52 Q0 =p) ) Q)Y (5 Opp

x! = (i — x)! y! = (G—y)!
_ Me—)\—b—)\(l—p) (A —p))ye—,\+,\p
x! !
(Ap)*(A(1 —p))¥

= ] e rA=P(X =zY =y)

Theorem 4.12. If the number of occurrence of an event in unit time or space followings Poisson distribution with rate A\, then
the number of occurrence in ¢ units times or spaces follows Poisson(At).

Proof.

Number of occurrence of an event in ¢ unit time or space is equivalent to the sum of ¢t numbers of occurrence of an event in unit time
or space. Let X7 ~ Poisson(u), Xa ~ Poisson(A) are independent. For any k > 2,

k i k=i
=0 =32 (5 (=)
i=0 ’ ’
1 LK
— = o= (pt+N) : iyvk—i
Kl ;i!(k—i)!M

1 e
— = (N iyvk—i
=3 (F)
i=0
_ (M—/\)kef(wr)\)

k!

Therefore, (X1 + X3) ~ Poisson(A + p).
When ¢ = 2, the number of occurrence in 2 units times or spaces follows Poisson(2)).
By induction, the number of occurrence in ¢ units times or spaces follows Poisson(At). O

Example 4.11. (Hypergeometric distribution) X ~ Hypergeometric(N, m,n)

Suppose that we have a set of IV balls. There are m red balls and N —m blue balls. We choose n of these balls, without replacement,
and define X to be the number of red balls in our sample. Then:

P(X:k):w

forz =0,1,--- ,min(m,n).

There is an important example that has a wide range of applications in real life. However, we will not discuss this here. You can find
the example in Appendix [A]



Chapter 5

Continuous random variables

5.1 Introduction of continuous random variables

We recall some definitions of continuous random variables.

Definition 5.1. Random variable X is continuous if its distribution function (CDF) Fx(z) can be written as:
xT
FX(:U):]P’(XS:U):/ f(u)du

for some integrable probability density function (PDF) fx : R — [0, c0).

Remark 5.1.1. PDF fx is not prescribed uniquely since two integrable function which take identical values except at some specific
point have the same integral. However, if Fx is differentiable at u, we set fx(u) = F (u).

Note that we have used the same letter f for mass functions and density functions since both are performing similar task.

Remark 5.1.2. Numerical value fx () is not a probability. However, we can consider fx(z)dx =P(x < X <z + dz) as element

of probability.

Lemma 5.2. If continuous random variable X has a density function fx, then

L [% fx(z)de =1
2. P(X=xz)=0forallz e R

3. Pla< X <b)= [ fx(z)dx

Proof.
1. N
[ ixterds = im Py =1
2. )
P(X =2)= hliI(I]l / fx(x)de = Fx(x) — Jim F(x—h) = Fx(z) — Fx(z) =0
-0 Jx—h — 00
3.

b a b
P(agx<b):F(b)—F(a)=[ fX(x)dx—[ fX(a:)da::/ Fx (@) da

Remark 5.2.1. More generally, for an interval B, we have

P(X € B) = /fo(x)dx

35
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We also recall the definition of independence. This definition also works for continuous random variables.

Definition 5.3. Two continuous random variables X and Y are called independent if for all x,y € R,

Fxy(,y) = Fx(z)Fy (y)

Theorem 5.4. Let two continuous random variables X and Y be independent. Suppose g(X) and h(Y') are still continuous
random variables, then g(X) and h(Y) are independent.

Similar to discrete case, there is a joint distribution function for two random variables.

Definition 5.5. Joint distribution function (JCDF) of two continuous random variables X and Y is the function F : R? — [0, 1]
such that:

Fxy(z,y) =P(X <z,Y <y)
Two continuous random variables X and Y are jointly continuous if the have a joint density function (JPDF) f : R? — [0, 00)
such that:

2

Fxy(z,y) = /_ /_ fxy(u,v) dudv fxy(zy) = %@Fx’y(m’y) P(X,Y)e D)= //D fxy(z,y)dedy

We also recall the definition of marginal distribution function.

Definition 5.6. Given two continuous random variables X and Y. Marginal distribution function (Marginal PDF) of X given Y
is

el = [ Y by (@ w) dv

5.2 Conditional distribution of continuous random variables

Recall the definition of conditional distribution function of discrete random variable Y given X = z.

P(Y <y, X ==x)
P(X =x)

Fyix(yle) =P(Y <y|X =z) =

However, for the continuous random variables, P(X = x) = 0 for all z. We take a limiting point of view.
Suppose the probability distribution function fx(z) > 0,

P(Y <y,x <X <+ da)
Pz < X <2+ dx)
S ffrdw fx,v(u,v)dudv

- f;erm [x(u)du
Y Fxy(@,v)dedo

~ fx(z)dx

fxy(z,v) o

—oo fX(x)

Fyix(ylz) =P(Y <ylz < X <z +dx) =

Y

Definition 5.7. Suppose X,Y : Q — R are two continuous random variables with PDF fx (z) > 0 for some z € R. Conditional
distribution function (Conditional CDF) of Y given X = z is defined by

Frix(yle) =P <glX =z)= [ LxX@) 4

oo fx(z)

Conditional density function (Conditional PDF) of Y given X = z is defined by

fm@ﬂ%ﬂmm>fﬁﬁ@
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Remark 5.7.1. Since fx(x) can also be computed from f(x,y), we can simply compute

. fX,Y(xay)
frix(ylz) = 2 fxy(z,y)dy

Remark 5.7.2. More generally, for two continuous random variables X and Y with PDF fx(x) > 0 for some z € R,

fX,Y(x’U)

PY e AIX =z) = T Tx(@)

dv = /AfY\X(y\l‘) dy

Example 5.1. Assume that two jointly continuous random variables X and Y have a JPDF:

L o<y<z<1l 1

z,y) =14 =-1
fxx(@9) {O, Otherwise g osvsesl

We want to compute fx(z) and fy|x(y|z). For z € [0,1],

fX(fC)Z/ fX,Y(ﬁny)dy:/ *10§ygxgldy=/ —dy=1
—o0 —0 T o T
Therefore, X ~ U[0, 1].
For0<y<zrand 0<ax <1,
_ fX,Y(x,y) _ 1
frix(ylz) = 5@ @

Therefore, (Y|X = z) ~ U[0, z].

Example 5.2. We want to find P(X? +Y? < 1) with two jointly continuous random variables X and Y having JPDF in Example

Let Y € A, = {y : ly| £ V1 —z2}.

P(X?+Y2 <X =) = B(|Y] < VI- 22X =a) = /A Frix (yl) dy

1
[ 1y
A.n[0,1] T

min{z,v/1—xz2} 1
0 X

. 1
=min« 1, Pl 1
pc+vien= [ pevewdydo= [ fixGlofx@dyds
x24y2<1 z24y2<1

! [1
= / minq 1,4/— — 1, dz

0 X

= 1
:/fm+/wﬂf4m

0 LT

1 T/ . :
:ﬁ—’_ . Sino—smﬂ de (z =sinb)

In | ta o\|*
=In n—
2

2

=In(1) —In(v2 — 1) = In(1 + v2)

usy
4
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Similar to discrete random variables, we can find the distribution of X +Y when X and Y are jointly continuous.

Theorem 5.8. If two jointly continuous random variables X and Y have JPDF fx y, then X +Y has a PDF

v (z) = /_ sl o = ) = /_ R

Proof.

Fxiy(2) =P(X+Y < 2z) = / / fxy(z,y)dedy
z+y<z

00 z—y
:l/ t/~ fxy(z,y)dedy

:/_OO /_Z Ixyw—y,y)dvdy (v=x+y)

=/ / Ixy(v—y,y)dydv

fxiv(2) = Fx,y(2) = [ Ixy(z—yy)dy = [ Ixy(z,z—x)dx

O

Definition 5.9. Given two independent continuous random variables X and Y. Convolution fx iy (fx * fy) of PDFs of X and
Y is the PDF of X + Y

fxiv(z) = /:’O fx(z=y)fy(y)dy = /jo fx (@) fy(z — ) dx

5.3 Examples of continuous random variables

Similar with discrete random variables, we have some useful parametric distributions.

Definition 5.10. Parametric distribution of a continuous random variable is a distribution where the PDF depends on one or
more parameters.
Example 5.3. (Uniform distribution) X ~ Ula, b]
Random variable X is uniform on [a, b] if CDF and PDF of X is
0 zsa L <z<b 1
—— a<z
F = ( =8 <z <b = ¢ D=6~ T = —1,.
X(CC) —a a<zrT< fX (SC) {07 Otherwise b—_a a<z<b
1, x>b
Example 5.4. If X ~ U[0,1] and Y ~ U[0, 1]. In case of X 1L Y,
1, 0<¢t<1
1) = 1) = ) =0 =
Ix® = Fr(®) {O, Otherwise
00 1
feov@ = [ ixe-niwdy= [ fx-ydy
oo 0
1
= / lo<._y<1dy
0
min{1,z}
= / dy (z—1<y<z)
max{0,z—1}
2, 0<z2<1
=min{l,z} —max{0,z — 1} =¢2—2, 1<2<2
0, Otherwise
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Example 5.5. Assume that a plane is ruled by horizontal lines separated by D and a needle of length L < D is cast randomly on
the plane. What is the probability that the needle intersects some lines?

Let X be the distance from center of the needle to the nearest line and © be the acute angle between the needle and vertical line.
We have P(Intersection) = P (£ cos© > X).

Assume that X 1l ©. We have X ~ U [O, %] and © ~ U [O, g]

57 0<2z<2,0<60<

fxe(z,0)= {D”’

0, Otherwise

L cos0
4 oL
(cos@>X> // 10<x<D10<9<wdxd9—/ / S dudf = 2~
0059>a: Dm

Suppose that we throw the needle for n times.

(SE]

Intersectio
#{Intersection} ~ P(Intersection) = —
n Dn

Example 5.6. (Inverse transform sampling) If we have an invertible CDF G(z). How can we generate a random variable Y
with the given distribution function?
We only need to generate an uniform random variable U ~ UJ[0, 1]. We claim that Y = G=1(U) has the distribution function G(z).

Fy(z) = B(Y < ) = P(G"'(U) < 2) = B(U < G(x)) = Fy(G(x)) = G(x)

Example 5.7. (Exponential distribution) X ~ Exp(})
Random variable X is exponential with parameter A > 0 if CDF and PDF of X is

l—e > 2>0 Ae . x>0
F = ’ - == ’ - = )\ 7)\11’1'
x (@) {0, z<0 fx(@) {0, c<0 ¢ w0

Theorem 5.11. Exponential distribution has memoryless property. It means that for all s > 0 and ¢ > 0,

PX >s+tX >s)=P(X >1)

Proof.
Assume that X ~ Exp(\).

PU{X >s+t}N{X >s}) PX>s+t) et
P(X > s) TTP(X >s) | e e N =P(X > 1)

P(X >s+tX >s)=

Example 5.8. (Normal distribution / Gaussian distribution) X ~ N(u,0?)
Random variable X is normal if it has two parameters y and o2, and its PDF and CDF is

(o) =~ exp (—(2‘0’”) Px(e) = [ fxu)du

This distribution is the most important distribution.
The random variable X is standard normal if y = 0 and 02 = 1. (X ~ N(0,1))

M

fx(@) = $(z) = e~ % Fx(@) = o) = [ o(u)du

Claim 5.11.1. ¢(z) is a probability distribution function.

Proof.
Let I = [~ ¢(z)dx

:/_Z‘b(x)dm/_i‘b(y)dy:;r/_j;/_i 2 g dy

Let x = rcos@ and y = rsinf where r € [0,00) and 6 € [0, 27]

2 oo 27 L2 1 2
— / 72rdrd07— / e T d ( >d0 o =1
o Jo . 27 Jo

Since ¢(z) > 0, I = 1. Therefore, ¢(x) is a probability distribution function. O
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These are some properties that are used frequently.

Lemma 5.12. The normal distribution has the following properties:

1. Let X ~ N(0,1). If a random variable Y = bX + a for some a,b € R and b # 0, then Y ~ N(a, b?).

2. Let X ~ N(a,b?) for some a,b € R and b # 0. If a random variable Y = £=2 then Y ~ N(0, 1).

Proof.
1. Let z = bz + a. B
y—a 1 / a2 1 /y G
F =PY <y)=PX < = — e 2 dr = —— e 2 dz
Y(y) ( —y) < = b ) \/% . \/W .

Therefore, Y ~ N(a, b?).

2. Let x = bz + a.

byta 2 1 v 22
Fy(y):IP(YSy):IP’(XSbera):\/W/ e 22 dz:E/ e 2 dz

Therefore, Y ~ N(0,1).

[
Lemma 5.13. If X ~ N(u,0?), then for all s < ¢:
_ X — _ _ _
IP(nggt):IP’(s B ugt u>:¢<tu>_¢(s u)
o o o o o
Proof.
Just apply Lemma [5.2] and you would get the equation. O

This is a very important theorem, as it claims that the sum of normal distribution is still normal.

Theorem 5.14. If X; ~ N(u;,02) for i =1,2,--- ,n and they are independent, then Y 1 | X; ~ N (Z?:l iy Dy 012).

Proof.
We first consider a special case when X ~ N(0,02%), Y ~N(0,1) and X 1 Y.

Ix+v(2) :/

Ix(z=y)fy(y)dy

_/ 1 _(z—p)? 1 AW
=/ Wexp 52 mexp 5 Yy
1 22 ° 1 9 9
= 5 XD 2) lwexp (M(2y2+y (1+o ))> dy
+

I
@
X
o)

1 z 2? /°° o 1+ 02 22 2yz 22)) d
S T A < [ — _
2o 0?2 20%(1+02)) J_« P 202 \(1+02)2 1402 Y Y

2
1 22 n 22 > 1 Y Ti,z) g
e - e — — | e _— @ 7
o *14_02 XD 252 202(1+02) - /7271'% XP ) . 2 Yy
1+o (\/H-T)

1 . ( 22 )
= ——— X N —
VIt o D\ 21+ o)
Therefore, X +Y ~ N(0,1 + 02). In general case when X; ~ N(u,0%), Xo ~ N(p2,03) and X; 1 Xo,

X1 — n Xo — 2
g9 g9

X1+X2:O'2< >+M1+M2

2 2
We get % ~N (O, Z—é) Now we can apply this to special case and we get Xﬂ'i;’“ + X%"Q ~N (O, 1+ Z—é)
Therefore, X1 + Xa ~ N(u1 + p2,0% + 03). By induction, if X; ~ N(u;,0?) for i = 1,2,--- ,n and they are independent, then

ixi ~N (Zu202>
i=1 i=1 i=1
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Combining two normal distributions into a joint distribution can be really useful.

Example 5.9. (Standard bivariate normal distribution) Two continuous random variables X and Y are standard bivariate
normal if they have JPDF:
1 ( :C2—2pxy+y2)

z,Y) = ————ex
Parle) = o i P 2a- )

where p is a constant satisfying —1 < p < 1.

Remark 5.14.1. If X ~ N(0,1) and Y ~ N(0, 1),

277\/1—7;32/0; exp ( (z—py)*+ (1 pQ)y> .

_ (=—py)? 1 y2
e 200-p2) dy =

Ty () :[ fxy(z,y)de =
1 w2 [

N

_y? 1
B Ee —o0 V/27(1 — p?)

Remark 5.14.2. p is called the population correlation coefficient between X and Y. It will be discussed in Chapter 6.

In most of the cases, normal random variables X and Y do not have a mean of 0 and a variance 1. If we also include mean and
variance into the distribution, we would have the following distribution.

Example 5.10. (Bivariate normal distribution) Two continuous random variables X and Y are bivariate normal with
means px and py, variance 0% and 0%, and correlation coefficient p if JPDF is given by

o 1 (1 z—ux\? (I#x)(yw) (yw)Q
fxy( ’y)_Qﬂ'UXo'y 1—p26 p( 2(1 = p?) << ox ) 2p ox oy + oy

Example 5.11. Assume that random variables X ~ N(0,1) and Y ~ N(0, 1) are standard bivariate normal. For —1 < p < 1,

fxy(z,y) = 71 exp (_a:Q — y2)
XY = 2 2(1 - p?)

We want to find fx|y (z]y).

z, 1,2 1 1,2 y2 22 — 291
Fxpy (zly) = W = V2rer” fxy (z,y) = L (_py)
2 ; 2
= ;6(%7m7ﬁ)yz exp <_(x_py)>
1 _ 2
R N O Gl )
V1= 2 20— )

Therefore, we have (X|Y =y) ~ N(py,1 —p?). As p— 1, we have X — Y. As p — —1, we have X — —Y.
In general, there exists a random variable Z ~ N(0, 1) such that

X =pY +/1-p2Z (XY =y)=py+V1-p*Z (X)(p m)(Y)

Y 1 0 VA

We can see that bivariate normal distribution is a linear transform of two independent normal distribution.
More generally, for any orthogonal matrix A, we have two random variables W and U such that if they can be obtained by:

(2)=( Vo 7)A ()

then W and U will also be bivariate normal with p.

There are some remarks that may be important to know about.

Remark 5.14.3. X and Y are bivariate normal and uncorrelated if and only if X and Y are independent normal. We will talk
about what uncorrelatedness means.




42 CHAPTER 5. CONTINUOUS RANDOM VARIABLES

Remark 5.14.4. X and Y are jointly continuous and they are both normal does not mean they are bivariate normal.

Example 5.12. Consider a JPDF of random variables X and Y

%6_%(””2""92)7 zy >0
0, zy <0

fX,Y(xay) = {

As you can see, this is not a bivariate normal distribution.
However, if you look at their marginal PDF,

f ( ) /oo —l(wz-&-yz)d 1 &2 —1(x2+212)d 1 1,2 -0

)= —@ = == e 2 =——e 2 %

* o = =

fx($> = /O l6_%(362-"_y2) dy = i ~ e—%($2+92) dy = 1 e—%xz <0
oo T 2 oo \/ﬂ

This is the same to fy (z).
Therefore, X and Y are jointly continuous and they are both normal does not mean they are bivariate normal.

Remark 5.14.5. Two random variables X and Y are jointly continuous and uncorrelated Gaussian does not mean they are
independent Gaussian.

More generally, we could create a multivariate normal distribution from more than two random variables.

Example 5.13. (Multivariate normal distrubution) X ~ N, (u, 3)
Random vector X with dimension p is p-dimensional normal with p X 1 mean vector p and p X p variance-covariance matrix ¥ if

we have: L .
f(x) = (2m)" 3 | 3|72 em 20 Bx-m)

Remark 5.14.6. The elements a;; in i-th row and j-th column of variance-covariance matrix X is obtained by:
a;; = cov(X;, X;)

We will talk about how to calculate the covariance in the next chapter.

Example 5.14. (Cauchy distribution) X ~ Cauchy(6)
Random variable X has a Cauchy distribution if it has a PDF:

1

R S i)

Remark 5.14.7. If X ~ N(0,1) and Y ~ N(0,1), then 3 ~ Cauchy(0).

Example 5.15. (Gamma distribution) X ~ Gamma(a, \)
Random variable X has a gamma distribution with parameters a and A if it has a PDF:

e M (A\p)*l 2 >0 1
z) =< (@ ’ T = — e M),

where I'(«) is called the gamma function defined by:
') z/ e Yy*tdy
0

Note that I'(a) = (o — 1)I'(aw — 1). If «v is a positive integer, I'(a) = (o — 1)!.

Lemma 5.15. When « = 1, it is an exponential distribution.

Proof.
Let X ~T'(1,\). The PDF is:

arz()_
z <0

{

— Az
Ae T

0,

x>0
<0
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Example 5.16. (Chi-squared distribution) Y ~ x?(n)
Assume that X7, X5, -+, X, are independent standard normal random variables. Let ¥ = > ", X2, We say Y has a x*-
distribution with parameter n if it has a PDF:

N3

1 o2 n_ | _z
frle)= { T TR 2
, r<0 I(

o
3
N

Remark 5.15.1. I'() = /7.

Lemma 5.16. Random variable x?(n) is equivalent to Gamma(Z, 3).

Proof.
Let X ~ Gamma(%,1). Substituting o = 2 and A = 3 into PDF of X, we have:

{QF(I ,)6*% (%)%*17 x>0 {F({;)ngg—le_g, z >0

n
2 =

0, z <0

Therefore, X ~ x2(n). O

Lemma 5.17. Given that V ~ x%(n1) and W ~ x2(ng). If V and W are independent, then V + W ~ x2(nj + na).

Proof.
Let V=X{+X3+---+X2 and W =2} +2Z3+--+ 22

no?

where X;, Z; ~ N(0,1) for all ¢, j.

VAW =X{+ X5+ -+ X2 + 23+ Z5+ -+ Zp, ~X*(n1 + na)

We may derive further from the chi-squared distribution.

Example 5.17. (Student’s t-distribution) W ~ t(n)
Given Y ~ x%(n) and Z ~ N(0,1). If Y and Z are independent, let

W =

=

The random variable W follows the t¢-distribution with n degree of freedom and PDF:

n+1

f(w)=%(l+f> 2

Remark 5.17.1. If W ~ ¢(1), then from the PDF:

This means that W ~ Cauchy(0).

Remark 5.17.2. Fixing Y = y for some constant y # 0, we can easily find that W ~ N(0, %)
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Example 5.18. (Beta distribution) X ~ Beta(a,b)
Random variable X has a beta distribution with parameters a and b if it has a PDF":

A=zt (1 -2)*1, 0<z<1 1
_ ) Bap® ( ) _ a=1(] _ pyb-17
g8)) = = x x
fx(@) {0, Otherwise  B(a,b) ( ) fsost
where B(a,b) is called the beta function defined as:
1
- _ I'(a)I'(b)
B(a,b) = 1 —a2)ldr = o——~
O

Example 5.19. (F distribution) F' ~ F(ry,73)
Assume that X and Y are independent random variables with X ~ x2(ry) and Y ~ x%(r3). Let:

F =

313

Then F has a F-distribution with r; and ro degrees of freedom with:

where 0 < w < 00.

Lemma 5.18. If U ~ F(ry,73), then £ ~ F(ry,71)

U
Proof.
1. By definition,
X
U= %
ro
where X ~ x2(r1) and Y ~ x2(rs). Therefore,
Y
1%
o= = ~ F(ra,m)

5.4 Functions of continuous random variables

Given a continuous random variable X and a function g such that g(X) is still a random variable, we have Eg(X) = [*_g(z) fx (z) da.
Therefore, we only need f,(z) to compute Eg(X). However, very often, we want to know the distribution of g(X).

Example 5.20. Assume that X is continuous random variable with PDF fx (x). Let Y = g(X) be a continuous random variable.
How do we find the PDF fy(y)? We work with Fy (y) first. Let g~ 1(A) = {x € R: g(x) € A}.

Fy(y) =P(Y < y) =P(g(X) € (—o0,y]) = P(X € g~ ((—00,9])) = /1(( ])fx(ﬂv) dx
9]
= — x dl'
fr(y) By (ol fx(z)

Example 5.21. Let X ~ N(0,1). Let Y = g(X) = X2. We want to find the PDF fy (y).
Fy(y) = B(Y <y) = B(—y5 < X < /i) = B(v5) — B(~5) = 28(y5) 1

We have X2 ~ x%(1). (This is a distribution)
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Theorem 5.19. In case that g(z) is strictly monotonic (strictly increasing or strictly decreasing) and differentiable, let Y = g(X).
We have

, if y = g(x) for some x

0, Otherwise

ﬁ%y%:{fxw‘WyD‘iﬂ‘Wm

Proof.
If g(z) is a strictly increasing function,

Fy(y) =Pg(X)<y) =P(X <g'(y) =Fx(g~'(v)

Fri) = B0) = Fx(™ ) g™ ) = Fx(s™ () gl<y>\

If g(x) is a strictly decreasing function,
Fy(y) =P(g(X) <y) =P(X 2 g~ (y)) =1 - Fx(97' (1))

Frl) = R o) =~ ) o™ 0) = Tl ) ayg—1<y>]

We can consider the multivariable case.

Example 5.22. Suppose two random variables X and Y are jointly continuous with JPDF fx y. Given that U = g(X,Y") and
V =h(X,Y). What is fyv(u,v)? For simplifying the process, we need to first make some following assumptions.

1. X,Y can be uniquely solved from U, V. (There exists only 1 pair of functions a,b such that X = (U, V) and Y = b(U,V))

2. The function g and h are differentiable and the Jacobian determinant

99 9g
J(z,y) = |55 %FO
ox oy

Then

e ETRToR T ’ 7b ) ) 9 = ) vh 9 f ]
o) = ) = | TG 00800, () = 6, ) o .

Otherwise

)

Example 5.23. Given two jointly continuous random variables X;, X» and their JPDF fx, x,.
Let Yl :Xl +X2 and YQ :Xl 7X2.

Y+ Y
2

Y -Y,
2

1
X1 =a(Y1,Ys) Xo =b(Y1,Ys) J(r1,22) = ‘

Y1+Y2 Y1 — Y2
2 2

1
mfxl,Xz(l“hm) = §fX1,Xz (

More specifically, if X7 ~ N(0,1), Xo ~ N(0,1) and X; 1L X,

1
thYz (y1,y2) = |J(

1
T1,T3) = e
le,XQ( 1 2) \/ﬂ

1 Y1 +Y2 Y1 — Yo
fyl,Y2(y17y2) = 7fX1,X2 ( 5

— 3 (af+a3)

2 2 72
_ ie—% ((%(y1+yz))2+(%(y1—yz))2)

47
1 1

— e iwitud)

47

Therefore, Y7 1L Y5 and we have Y; ~ N(0,2) and Y5 ~ N(0, 2).
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Example 5.24. We do the same thing as the previous example but instead we have two independent random variables X; ~ UJ[0, 1]
and X5 ~ U[0,1]. For all 1,25 € R,

1, 1,20 € [O, 1]

= Llo<z,<1,0<z2<1
0, Otherwise ST=nEeTs

Ixi,x (21, 22) = {

1
fY17Y2(y17y2) = ithXz (

1

= 510§y1+yzé270Sy1—y2S2

Y1 +y2 Y1 — Y2
2 72




Chapter 6

Expectation

In this chapter, if we are discussing more than one random variables, we assume that either all are discrete or all are continuous. In
practical sense, it is possible to have some to be discrete and others continuous, but we will not tackle this situation. It is relatively
easy to proof all the theorems and lemmas in this case once you know how to prove when all are discrete or all are continuous.

6.1 Introduction to expectation

In real life, we also want to know about the expected final result given the probabilities we calculated. The result is usually a theoretical
approximation of empirical average. Assume we have random variables X7, Xo,--- , X which take values in {z1,x9, - ,z,} with
probability mass function fx(x). We get an empirical average:

We get the formula of expectation of discrete random variable. However, for continuous random variables, the probability in every
single point is 0. In order to make sense, we use the probability density function to obtain the expectation:

u:/oo xf(x)dx

— 0o

Definition 6.1. Mean value, expectation or expected value of a discrete random variable X with PMF fx is defined to be:

EX =E(X):= > =zfx(z)

z:fx (x)>0

whenever this sum is absolutely convergent.
Expectation of a continuous random variable X with PDF fx is defined to be:

EX = /OO xfx(x)dz

whenever this integral exists.

Remark 6.1.1. We usually can define EX only if E|X]| exists.

Example 6.1. Suppose a product is sold seasonally. Let b be net profit for each sold unit, £ be net loss for each left unit, and X
be number of products ordered by customer. If y units are stocked, what is the expected profit Q(y)?

)X - (- X)), X<y
Q(y)—{y@ Xy

47
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Theorem 6.2. Given two random variables X and Y. Expectation operator E has the following properties:
1. Forany a < b,if a < X < b, then a <EX <b.

2. If X >0, then EX > 0.

3. If a,b € R, then E(aX + bY) = aEX + DEY.

Proof.
1. If X is discrete, then:
EX =) afx(r) 2 ) afx(z)=a EX =) afx(z) <) bfx(x)=b
If X is continuous, then: ' x ) )
EX = /: sfx(@) > /O; afx(s) =a EX = /0; ofx () < /Z bfx(z) = b

Therefore, we have a < EX < b.

2. If X is discrete, since fx(z) >0 forall z > 0, EX =) «fx(z) > 0if X > 0.
If X is continuous, since fx(z) > 0 for all x > 0, EX = fooo xfx(x)dx > 0.

3. When X and Y are discrete,

E(aX +0Y) =Y (az+by)fxy(z,y) =a) x <Z fX,Y(iU»y)> +b> y <Z fX,Y(xvy)>
= afoX(x) +b2yfy(y) =aEX + DEY
z Yy
When X and Y are continuous,

E(aX +bY) :/ / (a;v—&—by)fxﬁy(;v,y)dydx:a/ x/ fxy(z,y) dydx—l—b/ / yfxy(z,y)dydx

:/00 xfx(a:)dx+b/oo yfy (y) dy = adEX + DEY

By applying the part 3 of the above Theorem, we obtain the following result.

Lemma 6.3. (Linearity of expectation) More generally, for any sequence of random variables {X;, X, -+, X,,}, we have

E (i aiXi> = iaiEXi
i=1 =1

Theorem 6.4. (Tail Sum Formula) If discrete random variable X has a PMF fx satisfies fx(2) = 0 when x < 0, then:

EX =Y P(X > k)
k=0

If continuous random variable X has a PDF fx satisfies fx(z) =0 when x < 0, then:

o0
]EX:/ P(X > z)dx
0

Proof.
For discrete random variable X with fx (z) for any = < 0,

iIP(X>k):§:]P’(X2k):§:

o]
k=0 k=1 k=1 1=k

P(X:i):ikIP’(X:k):EX
k=1

For continuous random variable X with fx(x) for any z < 0,

/OOOIP’(X>w)dxz/ooo/xmfx(y)dydmz/Ooo/oyfx(y)dﬂﬁdy:/Oooyfx(y)dy:EX
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The following lemma is a formula I developed just for proving the next theorem.

Lemma 6.5. If continuous random variable X has a PDF fx with fx(2) = 0 when 2 > 0, and a CDF Fy, then

0
EX = / —Fx(z)dx

Proof.
/ OOO —Fx(2)dv = /Ooo / 1 ~fxy)dyds = [ OOO / () dedy = / OOO yfx(y) dy = EX

Theorem 6.6. Given a function g : R — R and a random variable X.

1. If X is discrete with a PMF fx(x), and g(X) is still a discrete random variable, then:
= g(a)fx(x)

whenever this sum is absolutely convergent.

2. If X is continuous with a PDF fx(z), and g(X) is still a continuous random variable, then:

By(x) = [ " @)

— 00

whenever this integral exists.

Proof.

1. We first tackle the first part. Let Y = g(X). We have:

D og@)fx(@) =) Z Zy Y Pwe:X(w)=q1})
x Y xg x:g(w):'q

—Zyﬂ” {we:g(X(w) =g}

= nyy =EY = Eg(X)

2. We first consider that g(z) > 0 for all z. Let B = {« : g(x) > y}. By Lemma

Eg<x>=/0 P(g(X >>ydy—/ [ #xta dxdy—/ /gm dydx—/ooogm(a:)dw

We then consider that g(z) <0 for all z. Let C' = {z : g(z) < z}. By Lemmal6.5]

Eg(X)/OOO o) (2 dzf/ / —fx(x da:dzf/ /9(me dzdxf/i 9(2) fx (z) dx

Now we combined both formulas into one. If g(X) is a random variable, then:

e’} 0 o0
Eg(X) = / o) fx (x) do + / o) fx (2) do = / o(e) fx () dx

—0o0 — 00
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Theorem 6.7. Given a function g : R? — R and two random variables X and Y.

1. If X and Y are jointly discrete with JPMF fx y(z,y), and ¢(X,Y) is a discrete random variable, then:

=3 g,y fxy(@,y)
y
2. If X and Y are jointly continuous with JPDF fx y(x,y), and g(X,Y) is a continuous random variable, then:

g(X,Y) / / z,y) fx,v(z,y)dedy

Proof.
1. Let Z = g(X,Y). We have.

gy fxy @)= > gy fxy(@y) = ZZ > P(XY)=(2,y)
z,y z zyg(z,y)=2 z,y:9(x,y)=2

=" P e Q: (X, V) () = 2)

= 2fz(z) =EZ =Eg(X,Y)

2. We will not prove it. Just note that it works similar to previous theorem.

Remark 6.7.1. We may generalize it into a random vector.

We have some special terms for some special expectations.

Definition 6.8. Let £ € N.. We have a special term for each of the following expectations:

1. The k-th moment my of X is defined by:

2. The k-th central moment «; is defined by:

=E(X —EX)* = E(X —my)*

Remark 6.8.1. Not all random variables have k-th moments for all k¥ € N.

Remark 6.8.2. We cannot use finite number of moments to uniquely determine a distribution with k-th moments for all k£ € N.

Definition 6.9. Given a random variable X.

1. Mean of X is the 1st moment, denoted by pu, defined by:

uw=EX

2. Variance of X is the 2nd central moment, denoted by Var(X), defined by:

Var(X) = E(X — p)* = E(X?) — p°

3. Standard deviation of X, denoted by o, is defined by:

Var(X)

Lemma 6.10. If two random variables X and Y are independent, then E(XY) = EXEY.

Proof.
If X and Y are both discrete,

nyfxy r,y) Zmyfx (y) = mex(m)z:yfy(y) =EXEY

x
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If X and Y are both continuous,

BxY)= [ [ aupsyewdyde= [ [ aupc@tdyde= [ afe@ds [ ufv)dy—ExEY

Remark 6.10.1. The converse is not generally true.

We may generalize it into a function of X and Y. It is very important, as it implies that two resultant random variables of function
g(X) and h(Y") are "uncorrelated” as long as two random variables from the domain X and Y are independent.

Theorem 6.11. Given two random variables X and Y and two functions g, h : R — R such that g(X) and h(Y") are still random
variables. Let X and Y be independent. If E(g(X)h(Y)),Eg(X) and Eh(Y") exist, then E(g(X)h(Y)) = Eg(X)Eh(Y).

Proof.
If X and Y are both discrete,

E(g Zg y)Ixv(@,y) Zg x(z)fy(y) = Zg(m)fx(x) Zh(y)fY(y) =Eg(X)En(Y)

Y

If X and Y are both continuous,

E(g // fxyxydydm—// Fx (@) fy (y) dy da

- / o(@)fx (@) d /°° h(y)fy (y) dy = Eg(X)ER(Y)

— 00

We can use the properties of expectations to deduce the properties of variance.

Theorem 6.12. For random variables X and Y,
1. Var(aX +b) = a? Var(X) for all a,b € R.
2. Var(X +Y) = Var(X) + Var(Y) if X and Y are uncorrelated.

Proof.
1. Using linearity of E,

Var(aX +b) = E((aX +b—E(aX +))?) = E(a*(X — EX)?) = ¢’E((X — EX)?) = a? Var(X)

2. When X and Y are uncorrelated,
Var(X +Y) =E(X +Y —E(X +Y))?) = E(X —EX)? 4+ 2(XY — EXEY) + (Y — EY)?)
= Var(X) + 2(E(XY) — E(X)E(Y)) + Var(Y)
= Var(X) + Var(Y)
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6.2 Conditional expectation

Sometimes, it is not practical to find EX itself. What if we want to find the expectation of X given that another result happened?
Similar with conditional probability, we may also have conditional expectation too.

Definition 6.13. Given two random variables X and Y.

1. If X and Y is discrete, then the conditional expectation ¢ of Y given X = x for any x is defined by:

Y(@) =EY|X =2) =) yfrix(ylz)

2. If X and Y is continuous, then the conditional expectation ¥ of Y given X = x for any «x is defined by:

oo

() = E(Y|X = z) = / yfvix () dy

Conditional expectation 1 of Y given X is defined by:

P(X) = E(Y]X)

Example 6.2. Assume we roll a fair dice.

1, we{2,4,6}

Q={L2,---,6} Y(w)=w X(w){o w e {1,3,5}

We try to guess Y. If we do not have any information about X,

EY = arginin(E((Y —e)?) =35

If we know that X = x, in which we have two cases: X =1 and X =0

P(X =1,Y =y) L y=246 P(X =0,Y =y) 0, y=2,4,6
1 — b — 3? b b 0 — b — b b b
24446 1+3+5
EY|IX=1)=) yfrx@l)=—— =4 EY|X =0) = =3
» 3 3

Finally, if we want to guess Y based on the future information of X,

P(X) =E(Y|X) =4(1x=1) + 3(1x=0)

Example 6.3. If Y = X then ¢(X) = E(Y|X) =E(X|X) = X.

Lemma 6.14. Given two random variables X and Y. We have the following properties:
1. E(aY +bZ|X) = aE(Y|X) + DE(Z|X)
2. fY >0, then E(Y|X) > 0.
3. If X and Y are independent, then E(Y|X) = E(Y).

Proof.

1. If X, Y and Z are discrete, then for all z,

E(aY +bZ|X =2) = (ay+b2)P(Y =y, Z=2X =a)=a» yP(Y =y, Z=2X=2)+bY P(Y =y, Z =2X =x)

Y,z Y,z Y,z

= azyfwx(y\l“) + bZZfZ\X(Zm

=aE(Y|X =2) + bE(Z|X = x)
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If X, Y and Z are continuous, then for all z,

E(GY"‘bZ‘X:x):/_OO /_OO (ay—i—bz)W

:a/ y fY,Z,X(yaz7x) dZdy+b/ p fY,Z,X(yvzax) dde

dydz

—oo —00 fX(Jj) —o0 —o0 fX(Z’)
_ [T fvx(y, @) > fzx(za) _ _
=a [m Yy @) dy + b[m Zifx(.%‘) dz=aB(Y|X =2) + bE(Z|X = )

Therefore, E(aY + bZ|X) = aE(Y|X) + bE(Z|X).
2. If X and Y are discrete, then for all x,
EY|X =2) = nyY|X(Z/|$) >0
Y
If X and Y are continuous, then for all x,

E(Y]X = z) = / T ufyix W) dy > 0

Therefore, E(Y|X) > 0if Y > 0.

3. If X and Y are discrete, then for all z,
E(Y|X =z) wax ylz) = ZfY(y) =
y

If X and Y are continuous, then for all x,

B(Y|X =) = [ " yhvix o) dy = / T uhv(y)dy = EY

— 00

Therefore, if X and Y are independent, then E(Y|X) =EY.

In fact, we can extend the definition of conditional expectation into o-field.

Definition 6.15. Given a random variable Y and a o-field X C F. E(Y|H) is any random variable Z satisfying the following
properties:

1. Z is H-measurable. (Z~!(B) € H for all B € B(R))
2. E(Y14) =E(Z14) for all A € H.

Remark 6.15.1. Under this definition,
E(Y[X) = E(Y|o(X))

Theorem 6.16. (Law of Total Expectation) Given two random variables X and Y. Conditional expectation (X) = E(Y|X)
satisfies:
Ep(X) = EY

Proof.
We can apply Theorem If X and Y are discrete,

(X)=> (@) fx nywx yla) fx (@ nyxy zy) =Y yfv(y) =

If X and Y are continuous,

= /_Z V(z) fx(2)de = /_i /_Z yfyix(ylz) fx(z) dy de = /_Z /_O; yfxy(z,y)dyde = /_O;y/_o; Ixy(z,y)dedy = /_Z yJ

The proof is similar if one of them is discrete and another is continuous. O
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Example 6.4. A miner is trapped in a mine with doors, each will lead to a tunnel.

Tunnel 1 will help the miner reach safety after 3 hours respectively.

However, tunnel 2 and 3 will send the miner back after 5 and 7 hours respectively.

What is the expected amount of time the miner need to reach safety? (Assume that the miner is memoryless)
Let X be the amount of time to reach safety, Y be the door number he chooses for the first time.

EX = EE(X|Y)) gﬂzxw k) (Y=k>=3<§)+<EX+5)(;>+(EX”)<§)
EX =15

What is the expected amount of time the miner needed to reach safety after he chose the second door and sent back?
Let X be the time for the miner to reach safety after the first round.

]E(X|Y:2):fox|y(x2):ZxP(XP(_xY_2 Zm _x_5;)/_2) Z(a:+5)JP>(X F) =EX +5

x

Example 6.5. We consider a sum of random number of random variables.
Let N be the number of customers and X; be the amount of money spent by the i-th customers.
Assume that N and X;’s are all independent and EX; = EX, what is the expected total amount of money spent by all N customers?

“(2%) == (:(27))

~ N Xy Nen
E:EP’P(Z“QZZiﬁ- ) o

n=0 y

DHILOETMELED

= ZE (ZXZ) P(N = n)

=Y nEXP(N =n) = ENEX

The following theorem is the generalization of Law of total expectation.

Theorem 6.17. Given two random variables X and Y. Conditional expectation ¢ (X) = E(Y|X) satisfies:
E(¢(X)g(X)) = E(Yg(X))

for any function g for which both expectations exist.

Proof.
We can apply Theorem If X and Y are discrete,

E((X)g(X)) =Y _v(@)g(@)fx(x) = Y yfvix(yla)g nyxy (z,y)g(x) = E(Y (X))

T,y

If X and Y are continuous,

E(u( /‘w ) fx (e m—/ / Mmymh((@@WZ/Z/ZWmﬂwM®@W=WWWD

O
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If there is conditional expectation, there will also be conditional variance.

Definition 6.18. Given two random variables X and Y. Conditional variance is defined by:

Var(Y]X) = E((Y — E(Y]X))?|X)

We can obtain the variance of a random variables based on conditional variance.

Theorem 6.19. (Law of Total Variance) Given two random variables X and Y. We have:

Var(Y) = E(Var(Y | X)) + Var(E(Y] X))

Proof.
Using Theorem and Theorem

E(Var(Y|X)) + Var(E(Y| X))

E(E((Y - E(Y]X))?|X)) + E(E(Y|X))* — (E(E(Y|X)))*
(Y = E(Y[X))* + E(E(Y]X))* - (EY)?
(YQ)—2E(YE(Y|X)) E(E(Y|X))? + E(E(Y|X))* — (EY)?
(

(

A

Y?) —2E(E(Y]X))* + 2E(E(Y]X))* — (EY)?
Y?) — (EY)* = Var(Y)

—~

E
E
E
E

O

Sometimes, we want to find the tendency in the linear relationship between two random variables. We say it is called the covariance
of two random variables.

Definition 6.20. Covariance of two random variables X and Y is:

cov(X,Y) =E((X —EX)(Y —EY)) = E(XY) —- EXEY

Remark 6.20.1. Magnitude of covariance is the geometric mean of the variances of two random variables. The sign represents
the linear relationship between two random variables. If the sign is positive, then two random variables show similar behaviour. If
the sign is negative, then two random variables show opposite behaviour.

Lemma 6.21. For any random variables X, Y and Z, we have:
1. Var(X) = cov(X, X).
2. cov(X,Y) = cov(Y, X)
3. cov(X,Y + Z) =cov(X,Y) + cov(X, Z)

4. If X and Y are uncorrelated, then cov(X,Y) = 0.

Proof.
1.
cov(X, X) = E((X —EX)(X —EX)) = E(X — EX)? = Var(X)
2.
cov(X,Y) =E(XY) -EXEY = EY X — EYEX = cov(Y, X)
3.

cov(X, Y+ Z2)=EX(Y +2)) —EXE(Y +2) =E(XY) —EXEY + E(XZ) —EXEZ = cov(X,Y) + cov(X, Z)
4. If X and Y are independent, then

cov(X,Y) =E(XY) - EXEY = EXEY — EXEY =0
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Remark 6.21.1. In general, for any random variables X1, Xo, -, X,

Var(X; + Xo+ -+ X,) = iVar(Xi) +2) (E(X;X;) - EX;EX;) = Zn: Var(X;) + 2 cov(X;, X;)

i<j i=1 i<j

Example 6.6. If X; are independent and Var(X;) = 1 for all 4, then:

ar (Z XZ-> = ZVar(X
i=1 i=1
If X; =X for all ¢ and Var(X) = 1, then:

(ZX) Var(nX) =

We usually only care about the normalized covariance, which is called correlation coefficient.

Definition 6.22. Population correlation coefficient between two random variables X and Y, denoted by p, is given by:

cov(X,Y)
Var(X) Var(Y)

We can find the relationship between X and Y based on their correlation coefficient.
1. If p > 0, then X and Y are positively correlated.
2. If p <0, then X and Y are negatively correlated.

3. If p=0, then X and Y are uncorrelated.

Remark 6.22.1. Population correlation coefficient p of random variables X and Y satisfies —1 < p < 1.

Remark 6.22.2. If p is near 1 or near —1, then it shows a strong linear relationship between X and Y

Remark 6.22.3. The constant p used in bivariate normal distribution is the population correlation coefficient.

Example 6.7. If X ~ N(0,1) and Y ~ N(0, 1),

cov(X,Y) = E(XY) — EXEY = E(XY)

T
p] e 20-p {L‘
o 2rr(1 — p?) Y
= e pydy = / Y2o(y)dy = p
-/ N

Lemma 6.23. Two random variables are uncorrelated if E(XY) = EXEY.

Proof.
Based on the definition of the correlation coefficient, p = 0 if and only if cov(X,Y’) = 0. Therefore,

cov(X,Y) =E(XY) —EXEY =0 < E(XY)=EXEY
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Remark 6.23.1. If X and Y are independent, then they are uncorrelated. The converse is generally not true.

Example 6.8. Let X be such that fx(0) = fx(1) = fx(—1) = § and Y be such that Y =0if X #0and Y =1if X = 0.
E(XY) =0 EX =0 =E(XY)
However,

P(X =0,Y =0) =0 P(X =0) #0 P(Y =0)#0 P(X = 0)P(Y =0) #0

Therefore, X and Y are uncorrelated, but they are not independent.

When would the converse be true? It turns out it is true when X and Y are uncorrelated and bivariate normal.

Theorem 6.24. Random variables X ~ N(ux,0%) and Y ~ N(uy,0%) are bivariate normal and uncorrelated if and only if X
and Y are independent normal.

Proof.
Since X and Y are uncorrelated, cov(X,Y) = 0 and thus population correlation coefficient p = 0.

Therefore, we have:
2 2
1 1 T — —
fxy(@,y)=5——exp|—5 TR (Y
2o x oy 2 ox oy

(e (7)) (e (7))
= x(@) )

Therefore, X and Y are independent if X and Y are uncorrelated bivariate normal.
If X and Y are independent normal, then we have:

fxy(z,y) = fx(@)fy(y)

Therefore, X and Y are both uncorrelated and bivariate normal with p = 0. O

6.3 Expectation and Variance of distributions

In this section, we will primarily focus on finding the expectation and variance of distributions we have taught.

Theorem 6.25. Given a discrete variable X.

1. If X ~ Bern(p), then EX = p and Var(X) = p(1 — p).

2. If X ~ Bin(n,p), then EX = np and Var(X) = np(1l — p).

Proof.
If X ~ Bern(p),
EX =0(1—p)+1(p)=p Var(X) = E(X?) — (EX)* =p—p® =p(1 —p)
If X ~ Bin(n,p), then by definition, X = Y7 + --- 4+ Y,, where Y; ~ Bern(p). Therefore, by O

Theorem 6.26. If X ~ Geom(p), then EX = % and Var(X) = 1p_2p'

Proof.

00 _ 0o _ P 1
EX =) kp(l=p)"" =p) k1-p)"' = 5=~
k=1 k=1

Var(X) = E(X(z — 1)) - EX + (EX)? = ]1) - ]% + ik(k —1p(1 —p)Ft
k=2

- }) - pi e _p)gk(k_ 1)(1 - p)*-2
_2p(1—p) 2(1—-p)

p? P
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Example 6.9. Assume we have N different types of card and each time one gets a card to be any one of the N types. Each types
is equally likely to be gotten. What is the expected number of types of card we can get if we get n cards?
Let X = X7 4+ Xo + --- 4+ Xy where X; =1 if at least one type i card is among the n cards and otherwise 0.

IEXiIP(Xil)1<NA_71>n ]EXiEXiN<1<N]\_71)n)

i=1

What is the expected number of cards one needs to collect in order to get all NV types?
Let Y =Yy 4+ Y7 + -+ Yy_1 where Y; is the number of additional cards we need to get in order to get a new type after having 4
distinct types.

P(Y; (Y; ~ Geom (&=

z))

H
2

HZ\N

N-1

=
b.<
I

EY; =

L
N N-1

-
I
=)

i=0

Theorem 6.27. If X ~ NBin(r, p), then EX = % and Var(X) = 7"(;7;”).

Proof.
Assume that X; ~ Geom(p) for all i. Since X is the sum of r independent geometric random variable, we get:
- r r(l—p)
EX = EX, = — Var(X Var(Xy) =
2 BN = -3 P
O
Theorem 6.28. If X ~ Poisson(\), then EX = A and Var(X) = A.
Proof.
e )\k—l \
EX = =A —e =
Z k 1)' ;(k—l)!e
2 2 v~ M A
= -1 EX —(EX)*=X—- A\ -
Var(X) = E(X(X — 1)) + (EX) +kZ:2 i
VR & S
=A=XA+A B
N k—2)°
k=2
=2 A2+ N =)
O

Theorem 6.29. If X ~ Hypergeometric(N, m,n), then the expectation and variance are:

mn mn ((m—1)(n—1) mn
EX:W Var(X)—N<N_1+1N>
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We are not going to prove the variance one. In order to prove the expectation, we imagine the following scenario.

Example 6.10. Suppose that we have a set of N balls, which m of them are red and the rest are blue. We choose n of these balls,
without replacement. What is the expected number of red balls in our sample? We let X ~ Hypergeometric(N, m,n).
How do we find EX? Let X = X; + X5 + -+ + X,,,, where for all 4,

X — 1, if the ¢-th red ball is selected
L 0, Otherwise

From this, for all 7, we have:

&) o n

n—1 n—1)! —n)!

EX; = -~ = N1 =N
(n n!(N—n)!

Therefore, EX = 7.

Theorem 6.30. If X ~ Ula,b], then EX = 1(a +b) and Var(X) = £ (b — a)?.

Proof.

b
T 1
= dr = = b
EX /a — T 2(a+ )

Var(X) = —(EX)% + E(X?)
b 2

=—i(a+b)2—|—/ i

a

dx

—a
1 1
= —Z(aQ + 2ab + b?) + g(a2 + ab + b?)

1
@)= Lp—a)y

12 12
O
Theorem 6.31. If X ~ Exp()), then EX = % and Var(X) = )\%
Proof.
> -z —Ax | > —A\x 1 —Ax = 1
EX = TAe dr = —xe + e der = ——e = —
0 0 0 A 0 A
1 oo
Var(X) = —(EX)? + E(X?) = ~3z +/ 2™ dx
0
1 o
=" J;Qe_m‘go —l—/o 2ze M dx
1 2
=—— 4+ -EX
PEEDY
1 2 1
TTeTReT R
O

Theorem 6.32. If X ~ N(u,0?), then EX = p and Var(X) = o2.

Proof.
Let z =0z + p.

(y=—m?
2

]. > ]. o0 22 > 22 o0 22
IEX:W/ ye 20 dy—\/ﬂ(/ aze*sz—k/i ue2dz>—\/%/ e zTdz=p

1 > 9 _-w? 02 > 9 _ 22 —02 > _ 22 0'2 © _ 22 2
Var(X)—W/_Oo(y—u)e 257 dy—m/_ocze T dz / zd(e )— / e 2dz=0
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Theorem 6.33. All Cauchy random variables X ~ Cauchy(f) do not have defined expectation and variance.

Proof.
We check if E | X]| is infinite.
x

Y x = oz T =00
E'X"/_wwuw—e)?)d 2/0 A @0®"

Therefore, expectation and thus variance do not exist. O

Theorem 6.34. If X ~ x?(n), then EX = n and Var(X) = 2n.

Solving the following expectations are out of our scope.

Theorem 6.35. Given a continuous random variable X.
1. If X ~ Gamma(a, \), then EX = § and Var(X) = 3.

2. If X ~ t(n), then:

Var(X) = < oo, 2<n<4

L n>2
1 n—27
EX — {O, n >
undefined, Otherwise

undefined, Otherwise

3. If X ~ Beta(a,b), then EX = 45 and Var(X) = rppiersry-

6.4 Combining expectation from discrete and continuous random variables

Recall that the expectations are given respectively by

EX — Yo xfx(z), X is discrete
- [ zfx(z)dz, X is continuous

We want a notation which incorporates both these cases. Suppose that X has a CDF Fx. We can rewrite the equations as

EX — Y. xdFx(z), dFx(r)= Fx(z)—lim, .- Fx(y) = fx(z)
[xdFx(z), dFx(z)=28xdz = fx(z)dzx

Instead of using the regular Riemann integral, which cannot deal with discrete case, we can use the Riemann-Stieltjes integral, which
is a generalization of the Riemann integral.

b
/ g(x)dx = lim Zg Y @ig1 — i)

max;|T;41—x;|

[ s@ i@ = tim 3 9(a1) (Flavs) = Fie)

max; | ;41 —;|

if the limit does not depend on the choice of z} € [x;, z;41).

Definition 6.36. Expectation of a random variable X is given by:

EX:/a:dFX

Lemma 6.37. If g : R — R such that g(X) is also a random variable, then

E(g(X)) = / o) dFy

Remark 6.37.1. The notation of [ g(z)dFx (x) does not mean Riemann-Stieltjes integral.
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Example 6.11. If g is regular (differentiable at every point and every values in the domain maps to a value in range), then

> ol (Flain - Fla) ~ 3 glai) (e i - ) ~ [ gla) (@) de

Example 6.12. In irregular case, assume that the function g is the Dirichlet function. That is

1g(z) = {(1)7 z Zg Zg(wf)(F(xiH) — F(z;)) = Zg(xf)(%‘ﬂ - ;)

Since the limit depends on the choice of z}, Riemann-Stieltjes integral of 1g(x) with respect to F(z) = x is not well defined.
Therefore, E1g(X) cannot be defined as a Riemann-Stieltjes integral.
However, on the other hand,

Elg(X) =P(1lg(z) =1) =Po X~ 1(QnNJ0,1]) =0
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Summary

Definition

Definition 1. Given a set with n distinct elements.
1. Permutation of the set is an ordered arrangement of all elements of the set.

2. If k < n, k-permutation of the set is an ordered arrangement of k elements of the set.

Definition 2. If £ < n, k-combination of a set with n distinct elements is an unordered arrangement of k elements of the set.

Definition 3. These are the basic object of probabilities.
1. Experiment is an activity that produces distinct and well-defined possibilities called outcomes, denoted by w.
2. Sample space is the set of all outcomes of an experiment, denoted by €.
3. Event is a subset of the sample space and is usually represented by A, B,C, - - -

4. Outcomes are called elementary events.

Definition 4. Given two events A and B.
1. Union of A and Bisan event AUB={weQ:we Aorwe B}.
2. Intersection of A and Bisanevent ANB={we€N:we€ A and w € B}.
3. Complement of A is an event containing all elements in sample space () that is not in A. It is denoted by AC.
4. Complement of Bin Aisanevent A\B={weQ:we Aandw¢ B}.
5. Symmetric difference of A and B is an event AAB={w e Q:we AUB and w ¢ AN B}.

Definition 5. For any two events A and B, if all of the outcomes in A are also in B, then we say A is contained in B, written
as AC Bor BD A.

Definition 6. Given a sequence of events Ay, A, -+, Ag.
1. For any ¢ and j, if A;NA; =0, then A; and A; are called disjoint.
2. If A;NA; =0 for all ¢ and j, the sequence of events is called mutually exclusive.

3. If Ay UAs U ---U A =, the sequence of events is called exhaustive.

4. If the sequence is both mutually exclusive and exhaustive, it is called a partition.

63
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Definition 7. (Kolmogorov axioms of probability) Let (2, 7, P) be a probability space, with sample space Q, o-field F, and
probability measure P.

1. The probability of an event is a non-negative real number. For all E € F,

P(E) € R P(E) >0

2. The probability that at least one of the elementary events in the entire sample space will occur is 1.

P(Q) = 1

3. Any countable sequence of disjoint events E7, Es, - - - satisfies:

P (D E) = f:IP’(EZ-)
=1 =1

By this definition, we call P(A) the probability of the event A.

Definition 8. o-field (o-algebra) F is any collection of subsets of {2 which satisfied the following conditions:
1. If A€ F, then A® € F.
2. If A; € F for all i, then |-, 4; € F.
3.0eF.

Definition 9. Measurable space (2, F) is a pair comprising a sample space {2 and a o-field F.

Definition 10. Probability measure P : F — [0,1] is a measure on a measurable space (2, F) satisfying:
1. P(@) =0
2. P(Q)=1
3. If A; € F for all i and they are disjoint, then P({J;2; A;) = > ooy P(4;).

Definition 11. Probability space ({2, F,P) is a triple comprising
1. a sample space €2
2. a o-field F of certain subsets of (2

3. a probability measure P on (€2, F)

Definition 12. We say a sequence of events A, converges and lim,, ., 4, exists if

limsup A,, = liminf A,
n—00 n—oo

Given a probability space (2, F,P). Let A; € F for all i such that A = lim,,_,, A4,, exists. Then

T i) =1 )

Definition 13. Event A is null if P(A) = 0.

Definition 14. Event A is almost surely if P(4) = 1.

Definition 15. Given P(B) > 0. Conditional probability that A occurs given that B occurs is:

P(AN B)

P(4IB) = —5 5
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Definition 16. Events A and B are independent (A 1L B) if P(AN B) = P(A)P(B).
Given Ay, for all k € I. If for all i # j,
P(4;i N 4;) = P(Ai)P(4;)

then they are pairwise independent.
If additionally, for all subsets J C I,

P (ﬂ Ai> =[P4
i€J ieJ

then they are (mutually) independent.

Definition 17. Let A be a collection of subsets of 2. The o-field generated by A is:

o(A)=[)¢

ACG

where G are also o-field. o(A) is the smallest o-field containing A.

Definition 18. Product space of two probability spaces (21, F1,P1) and (Qg, F2,Ps) is the probability space (21 x Q2,G,P13)
comprising:

1. a collection of ordered pairs 1 x Qg = {(w1,ws) : w1 € Q1,wa € N}
2. a o-algebra G = o(F7 x Fa) where F; x Fo = {41 X As: Ay € F1, A € Fo}
3. a probability measure P15 : F; X Fo — [0, 1] given by:

Pio(A; x Ag) =Py (A1)Py(As)

for A; € F1,As € Fo.

Definition 19. Random variable is a function X :  — R with the property that:
X H(~o00,z)) ={weN: X(w) <z} €F

for any X € R. We say the function is F-measurable.

Definition 20. Borel set is a set which can be obtained by taking countable union, intersection or complement repeatedly.

Definition 21. Borel o-field B(R) of R is a o-field that is generated by all open sets. It is a collection of Borel sets.

Definition 22. (Cumulative) distribution function (CDF) of a random variable X is a function Fx : R — [0, 1] given by
Fx(z)=P(X <x)=Po X !((—00,2])

In discrete case, probabilty mass function (PMF) of discrete random variable X is the function f : R — [0, 1] given by:

fx(z) =P(X =z) =Po X~ ({z}) Fx(z)= Y f(@) fx(z) = Fx(z) = lim Fx(y)

. —T
Geamg Lam &

In continuous case, probability density function (PDF) of continuous random variable X is the function f : R — [0, 00) given
by:

FX(x):/_w flu) du fX(ac):—xFX(:r)

Definition 23. The ¢g-th quantile of a random variable X is defined as a number z, such that:

P(X <z)=g¢q
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Definition 24. Let X; : Q@ — R for all 1 <4 < n be random variables. Random vector X = (X1, Xo,---, X,,) : Q — R"™ with
properties:
X (D) ={we: X(w) = (X1(w), X2(w), -+, Xn(w)) € D} € F

for all D € B(R™).
We can also say X is a random vector if

for all B € B(R) and 3.

Definition 25. Given a random vector (X,Y). Joint distribution function (JCDF) Fx y : R? — [0,1] is defined as:
FX,Y(xay) = P(X <Y < y) =Po (XvY)_l((_ooam] X (_Oovy])

In discrete case, joint probability mass function (JPMF) of jointly discrete random variable X and Y is the function
fxy : R? = [0,1] given by:

fxy(z,y) =P((X,Y) = (z,9)) =Po (X,Y) "' ({z,y}) Fxy(e,y) =Y fluv)

In continuous case, joint probability density function (JPDF) of jointly continuous random variable X and Y is the function
fxy : R? = [0,00) given by:

2

0 Y z
Ixy(z,y) = 8x8yFX’Y(x’y) Fxy(z,y) = /_Oo /_m fxy(u,v)dudv

Definition 26. Let X and Y be random variables. Marginal distribution function (Marginal CDF) is given by:

Fx(z) = P(X!((~00,2]) NY "} ((—00,0))) = lim Fx y(z,y)

Yy—>00

In discrete case, marginal mass function (Marginal PMF) is given by:

fx(@) =" fxv(x,y)
Y
In continuous case, marginal density function (Marginal PDF) is given by:

Fx(z) = /_ " ey (@ y)dy

Definition 27. Given a random variable X. Mean value, expectation, or expected value of X is given by:

A — Dty (@)>0 fx (@), X is discrete
7, xfx () da, X is continuous

If it is absolutely convergent.

Definition 28. Given k£ € N} and a random variable X. k-th moment my, is defined to be:

E(X*) = > zF fx (), X is discrete
foooc 2 fx(r)dr, X is continuous

k-th cnetral moment oy, is defined to be

_ o Y@ —EX)F fx (), X is discrete
E(X-EX)5) = {f_oooo(l‘ —EX)*fx(z)dz, X is continuous

Mean p is the 1st moment = m; = EX.
Variance is the 2nd central moment ay = Var(X) = E((X — EX)?) = E(X?) — (EX)?2.
Standard deviation o is defined as o = /Var(X).
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Definition 29. Given two random variables X and Y. Conditional distribution function (Conditional CDF) of Y given
X =z for any x is defined by:

P(Y<y,X= o
B sy X=z) X is discrete

F ) =PY <y|X =z)=1¢  FE&E=2)
vix(vle) <yl ) {fyoo 7fxf;((i)’v) dv, X is continuous

In discrete case, conditional mass function (Conditional PMF) of Y given X = x is defined by:

P¥=yX=a) X is discrete
fY\X(y|x) = P(X=a) fx.v(z,y) . .
ayFY|X(Z/|~T) W7 X is continuous

Definition 30. Given two random variables X and Y, and an event X = x for some X. Conditional expectation of random
variable Y is defined by:
Xand Y discret
V(@) = B(Y|X = z) = >, v ix (ylz), an are discrete
f_ yfyix( (ylx)dy, X and Y are continuous

Given a random variable X. Conditional expectation of random variable Y is defined by:

dow 1/1( ), X and Y are discrete

75 (z)dz, X are continuous

$(X) = E(Y]X) :{

Definition 31. Given X Il Y. In discrete case, convolution fxiy (fx * fy) of PMFs of random variables X and Y is the PMF
of X +Y:
fxiv(?) =P(X+Y —2) =) fx@fr(z=2)=)_ fx(z-y)fr()
a3 )

In continuous case, convolution of PDFs of random variables X and Y is the PDF of X + Y

fxiv(z /fXZ— y) fy(y dy—/ fx(@)fy(z — z)dx

Definition 32. Parametric distribution of a random variable is a distribution where the PMF or PDF depends on one or more
parameters.
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Named Properties

Property 1. (Fundamental Principle of Counting) Suppose that m; represents the number of outcomes of the i-th event. The
total number of outcomes of n independent events is the product of the number of each individual event:

n
[[mi
i=1

Property 2. (Pascal’s Identity) Let n and k be integers with 0 < k < n. Then:
n\ (n-—1 n n—1
k) \k-1 k
Property 3. (Binomial Theorem) Let n be a non-negative integer. We have:

(z+y)" = Xn: (Z) ahy

k=0

where (Z) for all k£ are called the binomial coefficient.

Property 4. (Vandermonde’s Identity) Let m,n,r € Z with 0 < r < m and 0 < r < n. We have:
m-+n a m n
"= (2 6)

Property 5. (Multinomial Theorem) Let n be a non-negative integers. We have:

n
(x14+x2+ - +a)" = E < )z?lxgzx;lk
Ny, N2, -, Nk
(n1,m2, ,nk)ini+na+-+ng=n
where (n1,n9,- -+ ,n) are all non-negative integer-valued vectors.

Property 6. (Inclusion-exclusion formula)

P (O Ai> = P(A) - > P(ANA)+ -+ (-1)"TP(A N4 NN Ay)

1<j

Property 7. (General Multiplication Rule) Let A;, Ay, - -+, A, be a sequence of events. We have:

P (ﬂ Ai> = P(A1)P(A2]A1)P(A3| A1 N Ag) - P(Ap|A; N Ay N+ N Ap_y)
=1

Property 8. (Law of total probability) Let {Bi, B, -+ , By} be a partition of Q. (B; N B; =0 for all i # j and |J;_; = Q).
If P(B;) > 0 for all 4, then:

P(A) = Z P(A|B;)P(B;)

Property 9. (Bayes’ Theorem) Suppose that a sequence of events A, As,--- , A, is a partition of sample space. Assume further
that P(A;) > 0 for all ¢. Let B be any event, then for any i:

3 P(B|A;)P(A4;)
P(A;|B) = > o P(B|Ag)P(Ay)

Property 10. (Law of total expectation) Let ¢(X) = E(Y|X). Conditional expectation satisfies:

E(y(X)) = E(E(Y]X)) =E(Y)
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Property 11. (Tail sum formula) If discrete random variable X has a PMF f, with fx(z) = 0 when z < 0, then:

EX =) P(X >k)
k=0

If continuous random variable X has a PDF fx with fx(2z) =0 when 2 < 0, and a CDF Fx, then:

EX = /00(1 _ Fy(2))dz
0
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Distributions

For discrete random variables,

Example 1. (Bernoulli distribution) X ~ Bern(p)
Suppose we perform 1 Bernoulli trial. Let p be probability of success and X be number of successes.

0, <0 1—p, z=0
Fx(z)=q1-p, 0<2<1 fx(@) = {p, =1 EX=p Var(X) = p(1 - p)
1, z>1 0, Otherwise

Example 2. (Binomial distribution) Y ~ Bin(n, p)
Suppose we perform n independent Bernoulli trials. Let p be the probability of success and Y = X7 + Xo + --- + X, be total
number of successes.

n k n . .
W =(rta-rr RE=Y(pa-p EX=m Ve =m(i-p)

=0

Example 3. (Trinomial distribution)

Suppose we perform n trials with three outcomes A, B and C, where the probability of occurrence is p, ¢ and 1 —p — ¢q respectively.
Let X be number of occurrence of A and Y be number of occurrence of B.

Probability of x A’s, y B’'sand n —x — y C’s is:

n xT n—r—
el — ( >p (1= p— g
T,w,n = I = W

Example 4. (Geometric distribution) W ~ Geom(p) X ~ Geom(p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be probability of success.
Let W be the waiting time which elapses before first success. For k > 1,

1 1-—
fw (k) = p(1 — p)*! Fw(k)=1-(1-p)* EW =~ Var(W) = =
Above is the conventional geometric distribution.
Let X be number of failures before first success. For k > 0,
1-— 1-—
Fx (k) = p(1 — p)* Fx(k) =1— (1 — p)k+? EX — Tp Var(X) = pzp

Example 5. (Negative Binomial distribution) W,. ~ NBin(r, p) X ~ NBin(r, p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be the probability of success.
Let W, be the waiting time which elapses before r-th success. For any k > r,

k—1

fw. (k) = (r _ 1)1)’”(1 -p)*" EW, = % Var(W,) = "L =P)

P2
Let X be number of failures before the r-th success. For any k£ > 0,

E+r—1
r—1

Ix(k) = ( >p’"(1 —p)* EX — r(t—p) Var(X) = r(l—p)

b p

Example 6. (Poisson distribution) X ~ Poisson(\)
Suppose we perform n independent Bernoulli trials. Let p be the probability of success, A = np and X ~ Bin(n,p). When n is
large, p is small, and np is moderate:

]f =
_ (") k n—kw/\k Y _ A _ _
fx(k) = (k>p (1=p)" "~ fqe Fx(k)—zﬁe EX = A Var(X) = A

1=
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Example 7. (Hypergeometric distribution) X ~ Hypergeometric(N,m,n)
Suppose that we have a set of IV balls. There are m red balls and N —m blue balls. We choose n of these balls, without replacement.
Let X be the number of red balls in our sample. For 0 < k < min(m, n),

m\ (N—m
fx<k>—(’“)(<§)—k) EX = =~ Var(X) = =~ <<T”—N1>_<”1—1>+1’”’;Vfl)

For continuous random variables,

Example 8. (Uniform distribution) X ~ Ula, b]
Random variable X is uniform on [a,b] is PDF and CDF is:

0, T <a

1
— b—a’ asw< b F — r—a < <b
fx(@) {0, Otherwise x () bmar G
1, x>0

Example 9. (Exponential distribution) X ~ Exp())
Random variable X is exponential with parameter A > 0 if PDF and CDF is:

fx(x):{o, <0 Fx(x):{o, z <0

Ae M x>0 l—e ™ >0

Example 10. (Normal distribution / Gaussian distribution) X ~ N(u,o?)
Random variable X is normal if it has two parameters x4 and o2, and its PDF and CDF is:

1 T — 2 ) )
fx(x) = Wexp <_(202,u)> Fx(x) = [m fx(u)du EX =pu Var(X) =0

Random variable X is standard normal if 4 = 0 and 02 = 1. (X ~ N(0, 1))

1 x?

fx(@) =¢(z) = Eexp <2> Fx(z) =®(z) = [m o(u) du EX =0 Var(X) =1

Example 11. (Bivariate normal distribution) Two random variables X and Y are bivariate normal with px and py, variance o3

and 0%, and population correlation coefficient p if:

_ 1 1 z—px T — pBx Yy~ By y—pv)
fX.,Y(x,y)*Qﬂ_UXUY 1_p26Xp<2(1_p2) << ox ) QP( ox >( oy )+< Oy >))

Two random variables X and Y are standard bivariate normal if ux = py = 0 and 0% = 0% = 1.

Fev(@y) 1 . < a:2—2pxy+y2)
v,y = ———exp| ———5—
Y 2my/1 — p? 2(1 - p?)

Example 12. (Multivariate normal distrubution) X ~ N, (g, X)
Random vector X with dimension p is p-dimensional normal with p X 1 mean vector g and p X p variance-covariance matrix X if

we have: )
J(x) = (2m) ¥ 573 emaleEcw)

Example 13. (Cauchy distribution) X ~ Cauchy(9)
Random variable X has a Cauchy distribution with parameter 0 if:

I S - =
fX(a;)—ﬁ(1+(x_9)2) ]E\X|—/_OO 7T(1+(x—9)2)d
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Example 14. (Gamma distribution) X ~ Gamma(a, A)
Random variable X has a gamma distribution with parameters o and A if:

Q

= Ae AT ()Tl 1 >0 A A2

0, <0 e
fx(l‘):{ v F(a):/ e Yy dy EX = — Var(X):g
I'(a) 0

where I'(«) is the gamma function with I'(a) = (« — 1)I'(a — 1). If « is a positive integer, then I'(a) = (a — 1)L

Example 15. (Chi-squared distribution) Y ~ x2(n)
Assume that X, Xs,---,X,, are independent standard normal random variables. Let Y = " | X2. Random variable Y has a
x2-distribution with parameter n if:

B 0, <0 EY — P
fY(I)— 1’ 2_%.%‘%_18_%, .’1320 =n ar( )— n

Example 16. (Student’s t-distribution) W ~ t(n)
Given Y ~ x%(n) and Z ~ N(0,1). If Y and Z are independent, let

W:

=

The random variable W follows the t¢-distribution with n degree of freedom and:

_ntt Undefined <1
r(zH) w\ Undefined, n <1 nacmed, =
flw)y=—=~< 14 — EW = Var(W) = < oo, l<n<2
v/nal (%) n 0, n>1 n
pp %) n>2
where I'(«) is the gamma function.
Example 17. (Beta distribution) X ~ Beta(a, b)
Random variable X has a beta distribution with parameters a and b if:
szt N1 —-2) L 0<z <1 ! I'(a)T'(D)
2y = Bam ™ ’ B = [ e t- o= 2
fx (@) {O, Otherwise (a,5) 0 ( ) I(a+10)
a ab
a+b a(X) = GF Pt o+ D)

where B(a, b) is the beta function.

Example 18. (F distribution) F' ~ F(ry,r2)
Assume that X and Y are independent random variables with X ~ x2(r1) and Y ~ x?(r2). Let:

F =

31| I

Then F has a F-distribution with r; and r, degrees of freedom with:

F(n-grz (7,1)21 T11< 7'11U>
= —_ 2 1_1’_7
POt \n) v r

where 0 < w < o0.




Chapter 7

Generating function

7.1 Introduction of generating functions

A sequence of number a = {a; : i = 0,1,2,--- } may contain a lot of information. For example, values of PMF tells us the distribution
of a discrete random variables. A concise way of storing this information is to wrap up the numbers together in a generating function.

Definition 7.1. For any sequence {a, : n =0,1,2,---}, we defined the generating function by

00 N
Gu(s) = E a;s' = 1\}1_%0 E a;s’
i=0 i=0

for s € R if the limit exists.

Remark 7.1.1. We can observe that

Example 7.1. Sometimes, we cannot interchange countable sum with derivatives.
Let b, (z) = ®2% such that a;(z) = bi(x) and a,(z) = by (x) — by_1(2).

. : . sinnz
Z;Jan (@) = nlgnéo ; an(x) = nl;n;o = 0 (Squeeze Theorem)
A o Z() =0

lim Z 2% (@) = nhﬁrréo cosnz does not exist

Convolutions are common in probability theory, and generating functions can provide a tool for studying them.

Definition 7.2. Let a = {a; : ¢ > 0} and b = {b; : i > 0} be two sequence of real numbers. Convolution ¢ =a*b= {¢; : ¢ > 0}
of {a;} and {b;} is defined by
Cp = Z aibn—i

1=0

Example 7.2. If a, = fx(n) and b, = fy(n), then ¢, = fx4+v(n).

Lemma 7.3. If sequences a and b have generating functions G, (s) and Gy(s) respectively, then

GC(S) = Ga(S)Gb(S)

Proof.
G.(s) = i cps" = i iaibn,isisn_i = iaisi ibn,is”_i = iaisi ibjsj = Go(5)Gh(s)
n=0 n=0 i=0 i=0 n=i i=0 3=0

O

We can see from the definition of generating function that it is a power series. We may want to know whether the series is convergent.

73
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Definition 7.4. Radius of convergence R of power series is the half size of an interval such that the power series f(s) is
convergent. If s € (—R, R), then f(s) is convergent. If s € [~R, R], then f(s) is divergent.
We can obtain the radius of convergence by applying root test:

1
R=—
limsup,, . V/|an]|
Remark 7.4.1. We need to perform additional tests to find whether the power series converges at s = —R and s = R.

Remark 7.4.2. Sometimes, it is hard to compute R using root test. One convenient way to compute R is using the ratio test. If
the limit exists,
Qn

R = lim

n— o0

a7l+1

Here are some properties of power series involving radius of convergence. We will not prove them since the proof is not important.

Theorem 7.5. If R is the radius of convergence of G,(s) = > i~ a;s", then
1. G.(s) converges absolutely for all |s| < R and diverges for all |s| > R.

2. G4(s) can be differentiated or integrated for any fixed number of times term by term if |s| < R.

81’ e > %
E n __ § n
0s’ Ans" = st ns
n=0 n=0

3. If R > 0 and G,(s) = G(s) for all |s| < R’ for some 0 < R’ < R, then a,, = b, for all n.

Remark 7.5.1. For any sequence {a,, : n > 0}, if radius of convergence of G,(s) is positive, then {a,, : n > 0} is uniquely
determined by G,(s) via

Suppose that X is a discrete random variables taking values in the non-negative integers. We can see how the generating function
works in probability.

Definition 7.6. Probability generating function (PGF) of a non-negative random variable X is

o0

Gx(s) =Es¥ = Zsifx(i)

=0

Using this, we can actually find what distribution a random variable has with the following theorem.

Theorem 7.7. Given two random variables X and Y with corresponding PGFs. If two PGFs are the same, then X and Y have
the same distribution.

This is particularly useful to find the distribution of a random variable.

Example 7.3. Suppose that X 1l Y. Let X ~ Poisson(A) and Y ~ Poisson(p). What is the distribution of Z = X +Y?
Recall that fz = fx x fy. We let a,, = fx(n) and b, = fy(n).

X yi,—A
Gx(s) = Z A (; gt = M=) Gy(s) = eH(s—1) Gz(s) = eAFu)(s—1)
i=0

We may conclude that Z ~ Poisson(\ + p).

Remark 7.7.1. If a, = fx(n) for some random variables X, then R > 1 for Gx(s) = G,(s) since

Z fX (n)s”
n=0

converges when s € [—1,1].
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Example 7.4. Let X ~ Poisson()) and a,, = fx(n) = Are 2 By ratio test, as n — oo,

n!

an n+1
= — 00
Ap41 A

Therefore, R = oo.

Example 7.5. Let X has a PMF a,, = fx(n) = ;5. By ratio test, as n — oo,

2
an (n+1) 1
Ap+1 n

Therefore, R = 1.

There is an important theorem regarding s = 1. Again, we are not going to prove it.

Theorem 7.8. (Abel’s Theorem) Suppose that a,, > 0 for all n. If a has a generating function G,(s) and radius of convergence
R =1, then if Y °  a, converges in R U {oo}, we have

lim G,(s) = ian lim s" = ian
n=0 n=0

s—1— s—1—

Example 7.6. We have some PGF of random variable X.

X ~ Bern(p) Gx(s)=ps' +(1—p)s®=1—p+ps
X ~ Bin(n,p) Gx(s) =1 —p+ps)"
~ _ 1— n—=1,.n _ ps
X ~ Geom() Gx(9)= 30— 'p" = s
X ~ Poisson(\) Gx(s) = ™D

We already know that by computing the derivatives of G at s = 0, we can get the probability sequence. The following theorem shows
that we can get the moment sequence by computing the derivatives of G at s = 1.

Theorem 7.9. If random variable X has a PGF Gx(s), then
1. EX = lim, ,,- G'(s) = G'(1)
2. E(X(X-1)---(X —k+1)) =G®()
3. Var(X) =G"(1) + G'(1) — (G'(1))?

Proof.
1. By having s =1,

fo(S) = %fo(k’)sk
k=0

= kfx(k)s"!
0s a1 —

=> kfx(k) =EX
k=1

s=1 s=1

2. Let s < 1.

k
GH() = 2 3 fln)s = S nln— 1)+ (0 — b+ 05" fc(n) = BsS XX = 1) (X 4 1)

n

By applying Abel’s Theorem, we obtain

GP)=EX((X -1)--- (X —k+1))

Var(X) = E(X?) — (EX)? = E(X(X — 1))+ EX — (EX)? = G"(1) + G'(1) — (G'(1))?
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Interestingly, we can also use generating function to deal with sum of random number of independent random variables.

Theorem 7.10. Let X, X5, - be a sequence of independent identically distributed (i.i.d.) random variables with common PGF
Gx(s) and N be a random variable independent of X; for all ¢ with PGF Gn(s). If T = X; + Xo + --- + Xy, then

Gr(s) = Gn(Gx(s))

Proof.
GT(S) —FEsT = T‘N ZE T|N—n ( ) ZE(SX1+X2+~~+X1L NZH)P(N:’R) :Z(Gx(s))”P(N:n)
=Gn(Gx(s))
O
Example 7.7. The sum of a Poisson number of independent Bernoulli random variables is still Poisson.
Let Gn(t) = 21 and Gx(s) =1 — p + ps.
Gr(s) = Gn(Gx(s)) = XI7PFPs=1) = grp(s—1)

Therefore, T' ~ Poisson(Ap).
When JPMF exists, there obviously will be a joint PGF.

Definition 7.11. Let random variables X7, X be both non-negative integer-valued, jointly discrete with JPMF fx, x,.

Joint probability generating function (JPGF) is defined by

GX17X2(51’32) 81 82 225152fX1,X2 i .])
1=0 5=0
Remark 7.11.1. We can find that
.. (92 6j G}(l_x2 S1,8
fxy,x,(4,5) = <83i 831']('12)>
105 o (51,82)=(0,0)

Theorem 7.12. Random variables X and Y are independent if and only if Gx y (s,t) = Gx(s)Gy ().
Proof.
X 1LY,

ny(S t ZZS tJfXY ) j) Zsifx(i)ztjfy(j):Gx(S)Gy(t)
=0 j=0 =0 =0
If Gx y(s,t) = Gx(s)Gy(t), we consider the coefficient of terms s'¢’ for all i > 0 and j > 0. We can see that
fxy (i,5) = fx () fy (5)

Therefore, X 1 Y. O

Theorem 7.13. If random variables X and Y are independent, then Gx v (t) = Gx (t)Gy (%)
Proof.

Gxiy(t) = E@XT) = E(tV)E(t") = Gx ()Gy (1)
O

Remark 7.13.1. The converse does not necessarily be true.
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7.2 Applications of generating functions

The following example involves simple random walk, which is discussed in Appendix[A] Generating functions are particularly valuable
when studying random walk. So far, we have only considered random variables X taking finite values only. In this application, we
encounter variables that can take the value +o0o. For such variables X, G x(s) converges so long as |s| < 1 and

s—1—

lim Gx(s)=>» P(X =k)=1-P(X = o0)
k

Definition 7.14. A random variable X is defective if P(X = o0) > 0.

Remark 7.14.1. It is no surprise that expectation is infinite when random variable is defective.

With this generalization, we can start discussing random walk.

Example 7.8. (Recurrence and transience of random walk) Let Y}, the position of the particles after n moves and X; be
independent and identically distributed random variables mentioned in Appendix [A] For n > 0,

Y=Y X; Yo=0 P(X;=1)=p P(X;=—-1)=q=1—p
=1

Let Tp be number of moves until the particle makes its first return to the origin.
To=min{i >1:Y; =0}

Is Ty a defective random variable? How do we calculate P(Ty = 00)?
Let po(n) be the probability of the particle return to the origin at n moves and Py be the generating function of py.
Let fo(n) be the probability of the particle first return to the origin at n moves and Fy be the generating function of fj.

n n n . N
(2)p2q®, niseven .
n) =P, =0) = 2 Py(s) = lim n)s"
i) = x5, =)= { D00 o )= Jim S
N
fo(n) =P(Y1 #0,Y2 #0,--- ,Y,_1 #0,Y,, =0) = P(Ty = n) Fy(s) = lim > fo(n)s"
N—oo o
Theorem 7.15. From the definitions in Example [7.8 we have
1. Po(S) =1+ Po(S)FQ(S)
2. Py(s) = (1 — 4pgs®)~2
3. Fy(s) =1 — (1 —4pgs?)2
Proof.
1. By using Law of total probability,
po(n) =Y P(Y, =0[Y1 #0,Y2 #0,--+,Yi 1 #0,Y; = 0) fo(i)
i=1
n
=> PV, =0]Y; =0)f(9) (Markov property in Lemma [A.1)
=1
= Z P(Y,—:; = 0)fo(7) (Temporarily homogeneous property in Lemma [A.1)
i=1
= ZPO(” — k) fo(i)
i=1
po(O) =1

co k co o
Po(s) = po(k)s* =1+ po(k)s* =1+ > polk —i)fo(i)s* =1+ > po(k —i)s* fo(i)s' = 1+ Po(s)Fy(s)

k=0 k=1 k=11i=1 =1 k=i
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2. If you want to understand the proof, search ”Central binomial coefficient” in Wikipedia
We know that Y,, = 0 if n is even. Therefore,

N . N -1

20\ ;i o2 il 5\ i 2% 1
= 1] = 1] it g2t i —1)*4* 2 Pate2t . —
)= g, S = g 32 (2 Pt = g Sy (3 Yoo - oL

((2) is a generalized binomial coefficient)

3. By applying (1) and (2), we can get

Fo(s) = Po(s)
O
From this theorem, we can get the following corollary.
Corollary 7.16. The probability that the particle ever returns to the origin is
Z ()=1-|p—q|
Probability that the particle will not return to origin ever is
P(To = o0) = |p — ¢
Proof.
By using Theorem since p + ¢ =1,
Fo(1) =1—(1—4pg)? =1— (0> = 2pg +¢*)* = 1—|p— g
O

Remark 7.16.1. Random walk is recurrent if it has at least one recurrent point. (P(X < oo) = 1)
Random walk is transient if it has no recurrent points. (P(X = o0) > 0)

Notice that when p = ¢ = 3, P(Tp = 00) and therefore random walk is recurrent.

If p # q, then P(T) = c0) # 0 and so the random walk is transient.

2

Example 7.9. We use the Example again. How do we calculate ETj if p =¢q = %

Fo(s)=1—+/1— 2 Fl(s) = \/%752 ETy = lm Fj(s) = oo

This means that although we find that the particle almost certainly return to origin, the expectation for number of steps needed
to return to origin is still infinite.

We move on to our next important application, which is the Branching Process.
Many scientists have been interested in reproduction in a population. Accurate models for evolution are extremely difficult to handle,
but some non-trivial models are tractable. We will investigate one of the models.

Example 7.10. (Galton-Watson process) This process investigates a population that evolves in generations.
Let Z, be number of individuals of the n-th generation and Xi(m

generation. We have:

) be number of offspring of the i-th individual of the m-th

2 _{X{”>+X§")+--~+X(ZZ), Zn>1
"0 Z, =0

We make some following assumptions:

1. Family sizes of the individuals of the branching process form a collection of independent random variables.
(X*1s are independent)

*),

2. All family sizes have the same probability mass function f and generating function G. (X, ’’s are identically distributed)

Assume that Zy = 1. Note that Z; = X{O)
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Theorem 7.17. Let G,,(s) = Es?" and G(s) = Gy(s) = Es?1 = Es*." for all i and m. Then
Gn(s) = G(G(---(G(3)) ) = G(Gn-1(s)) = Gn-1(G(5))

is the n-fold iteration of G.
This further implies

Proof.
When n = 2,

(1) (1) (1)
Gy(s) = Es?2 = Es™1 T2 +4Xs) — g (GX@(S)) = G(G(s))

When n =m + 1 for some m,

Grmi1(s) = EsZm+1 = EsXi ™ XS e XE) Gz, (GX{"U(S)) = Gm(G(s))

O
In principle, the above theorem tells us the distribution of Z,,. However, it may not be easy to compute G (s).
The moments of Z,, can be computed easier.
Lemma 7.18. Let EZ; = IEXZ-(m) =y and Var(Z;) = 0. Then
no? w=1
EZ, = u" Var(Zy) = q g2¢m_q1y,m-1
{(“ U
Proof.
Using Theorem we can get
EZz Gy(1) = G'(G))G' (1) =G (Upu = p®
w=GL(1) = G'(Gaa(1)Gr 1 (1) = G Q)" = p"

G'{(l)—a +H(E W) -G M) =0"+pu" —p

Gy(1) = G"(G(1))(G'(1))* + G'(G(1))G"(1) = G"(1)(u* + p)

Gn(1) =G"(G ( n1 (OG- (1))? + G (Gra (1))Gr 1 (1)

= (0% + 1* — w7 + Gy (1)
= " 2(0 ) T G e T ) e S T e S e 1)
_p e (et - 1)
n—1
Ifu=1,
Var(Z,) = GL(1) + G,(1) — (G (1)* =c* + G _ (1) +1 -1 = no?
If p#1,
n—1/_2 2 _ n_1 n—1_2/ n _ 1
Var( ) G//( )+ an(l) _ (G{n(l))g _ H (U +M u)(/’[‘ ) +Mn _ MQn _ K g (/1' )
w—1 w—1
O

Example 7.11. Does this process eventually lead to extinct?
Note that

{ultimate extinction} = U{Z” =0} = nlgr;O{Zn =0}
P(ultimate extinction) = P ( lim {Z, = 0}) = lim P(Z, =0) = lim Gy (0)

n— oo

Let 1, = G,(0) and 1 = lim,,—, o 7.




80 CHAPTER 7. GENERATING FUNCTION

Theorem 7.19. We have that 7 is the smallest non-negative root of the equation
s=G(s)
Furthermore,
L.p=1lifu<1
2. n<lifpu>1

3. n=1if u=1and o >0

4. n=0ifp=1and 62 =0

Proof.

T = Gn(o) = G(Gn—l(o)) = G(Un—l)
We know that 7, is bounded. Therefore, 1, — n for some 7 € [0, 1].

0= lim 5, = lim G(un1) =G ( lim 5,-1) = G()

n—oo
Suppose that there exists another non-negative root .

m=G(0) <G(y) =1
n2=Gm) <GW) =19

By induction, n,, < % for all n and therefore 1 < 1. Therefore, 7 is the smallest non-negative root of the equation s = G(s).

G'(s) = ii—1)s"P(Z1 =) > 0
=2

Therefore, G is non-decreasing and also either convex or a straight line.
When 1 # 1, we can find that two curves y = G(s) and y = s intersects at s =1 and s = k € R.
We know that n < 1 since 7 is the smallest root. In order to intersect at s = n, G'(n) < 1.
If u=G'(1) <1, thenn=1.
If u=G'(1) > 1, then n = k such that G'(k) < 1.
In the case when p = G’(1) = 1, we need to further analyse whether y = G(s) intersects y = s at 1 point or infinite points.

0?=G"(1) +G'(1) - (G'(1)* =G"(1)
If 02 = G”(1) > 0, then n = 1.
If 02 = G”(1) = 0, then n = 0. O
7.3 Moment generating function and Characteristic function

Recall that we can unify both discrete and continuous distribution into one. We can change how we define PGF.

Definition 7.20. Probability generating function of a random variable X is given by:

Es¥ = / s*dFx

For a more general variables X, it is best if we substitute s = ef. We get the following definition.

Definition 7.21. Moment generating function (MGF) of a random variable X is the function M : R — [0, 00) given by:

Mx (t) = E(e!X) = /em dFx

Remark 7.21.1. The definition of MGF only requires replacing s by e’ in PGF. MGF is easier for computing moments, but less
convenient for computing distribution.

Remark 7.21.2. MGFs are related to Laplace transforms.
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Definition 7.22. Joint moment generating function (JMGF) of two random variable X and Y is given by:
MX7y(S, t) = E(@SX+tY)
We can easily get the following lemma.
Lemma 7.23. Given a MGF Mx (t) of a random variable X.
1. For any k£ > 0,
k
Ex* = m{P(0)
2. The function M can be expanded via Taylor’s Theorem within its radius of convergence.
oo
EXF
Mx(t) = = tk
i=0
3. If X and Y are independent, then
Mx 1y (t) = Mx (¢) My ()
Proof.
1.
8k
M® ()= — / e dFx(z)| = / Fel® dFx (z)| = / ¥ dFx (z) = EX*
otk t=0 t=0
2. Just using (1) and Taylor’s Theorem and you get the answer.
3. Substitute s = e into Theorem ?7.
O
Lemma 7.24. If X7, X5, -+, X,, are independent, then:
Mx, Xy, X, (t1, 82, s tn) = Mx, (t1) Mx, (t2) - - - Mx,, (tn)
Proof.
By independence,
MXl,XQ,-“ X, (tla tQ, . atn) _ E(et1X1+t2X2+"'+tan> — E(€t1X1 )E(et2X2) . E(etan,) — ]\4}(1 (tl)MXQ (tQ) . ]\/IX'H, (ﬁn)
O

Remark 7.24.1. Mx(0) =1 for all random variables X.

Example 7.12. Let X ~ Bern(p). We have:
My (t) = B(™X) = g + pe!

Example 7.13. Let X ~ Bin(n,p). We have:
Mx(t) = (g +pe')"

Example 7.14. Let X ~ Geom(p). We have:

fx(@) = p(1 - p)*! Mx(®) = ep(1 =) = =0

fx(@) =p(1l—p)* MX(t):’;etkp(lfp)k: %
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Example 7.15. Let X ~ NBin(r, p). We have:

z—1 _ pet "
— T(1 — p)ET My (1) =
fe@) = (12} )ora-n) «0) = (=2=)
z+r—1 D "
= "(1—p)* Mx(t) =
= (77 o S )
Example 7.16. Let X ~ Poisson(\). We have:
(o)
e eth—A .
Mx (t) = AR eMe =1
k=0 ’
Example 7.17. Let X ~ Ula, b] for some a < b. We have:
b otz tb__ta
[, & dx = e e’ t+40
My (t) = a a t(b—a)
x(®) {1, t=0
Example 7.18. Let X ~ Exp(\). For ¢t < A, we have:
> A
Mx(t) = /0 AN g = S
Example 7.19. Let X ~ N(u,0?). We have:
Mx(t) = ! - e’ exp —7@ = dx
* V2mo? J oo 202
1 /DO ox _w2—2(u—02t)m—|—,u2 i
V202 oo P 202
1 (n—o®)® —p2\ [ (x — (n—0?t)*
= T exp ( = /_OO exp | — = dr
—2uo?t + ott?

)

e ( 202

1
= exp (202t2 = ,ut)

Example 7.20. Let X ~ Cauchy(0).

1

fx(z) Zm

Mx (t) exists only at t = 0. We get Mx(0) = 1.

Example 7.21. Let X ~ Gamma(a, A). If t < A, we have:

t —Q
Example 7.22. Let X ~ x2(k). If t < 3, we have:
Mx(t)=(1-2t)"%
Example 7.23. Let X ~ Beta(w, ). We have:
M i 1:[ a+r tk
x( a+ﬁ+r
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Remark 7.24.2. Not all distributions have MGF'.

Example 7.24. MGF of X ~ t(n) is undefined.

Moment generating functions provide a useful technique but the integrals used to define may not be finite. There is another class of
functions which finiteness is guaranteed.

Definition 7.25. Characteristic function (CF) of a random variable X is the function ¢x : R — C given by:

ox(t) = E(e'X) = /em dFx(x) =Ecos(tX) + iEsin(tX) i=+/—1

Remark 7.25.1. ¢x(t) is essentially a Fourier Transform.

Lemma 7.26. CF ¢x of a random variable X has the following properties:

1. ¢x(0) =1. |¢px ()] <1 for all ¢

2. ¢x(t) is uniformly continuous

Proof.
1. For all ¢,
0) = / dFx(z)=1 |¢x(t)| = ’/(cos(tx) + isin(tz)) dFx (z /|cos (tx) +isin(tz)| dFx (x / dFx(x
2.

sup [ (£ + ) — dx (8)] = sup ] [0 — e arg
t t

<sup (/ |emﬁ| |eim71| dFX(ac))
t

When ¢ — 0, the supremum — 0. Therefore, ¢x (¢) is uniformly continuous.

Theorem 7.27. There are some properties of ¢x of a random variable X regarding derivatives and moments.

1. If qbg?)(()) exists, then

E |X|k < 00, k is even
E[X|"' < oo, kisodd

2. If E|X|" < o0, then ¢g§)(0) exists. We have

Proof.
We use the Taylor’s Theorem.

$0) = i"EX*

If k is even, we have gb)? (0) = (—1)2EX* = ( 1)2E |X|" exists. Therefore, E|X|* < cc.
If k is odd, we know that ¢ (k= 1)( ) ex1sts if qSX (0) ex1sts
Therefore, with ¢)(k 2 ( )= (- TEXF = (—)FTEX" L EIX|" < .

2. Again using the formula in (1). We have

Q) K
X o= =EX* <E|X|" <0
i

Therefore, ¢§§) (0) exists. The formula can be obtained from the Taylor’s theorem formula.
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Theorem 7.28. If X 1L Y, then ¢xv (t) = dx(t)dy (L)

Proof.

Ox v (t) = B X)) = B()B(E) = g (1) (1)

O
Again and again, we have a joint characteristic function.
Definition 7.29. Joint characteristic function (JCF) ¢x y of two random variables X, Y is given by
¢X,Y (5’ t) _ E(ei(sX+tY))
We have another way to prove that two random variables are independent.
Theorem 7.30. Two random variables X,Y are independent if and only if for all s and ¢,
dx,v(s,t) = ¢x(s)py(t)
Proof.
X 1UY, _ _ _
Oxy (s,) = B(¢'X ) = B(e")E(™) = dx (s)oy (¢)
Currently, it is not suffice to prove the inverse. We will need to use a theorem later. (Example [7.30)) O

Example 7.25. Let X ~ Bern(p). We have . '
¢x(t) = E(e"™) = ¢ + pe”

Example 7.26. Let X ~ Bin(n,p). We have _
¢x (t) = (¢ +pe)"

Example 7.27. Let X ~ Exp(1). We have
1

1—at

ox(t) = [ etV ds =

Example 7.28. Let X ~ Cauchy. We have
¢x(t) = eVl

Example 7.29. Let X ~ N(u,0?). Using the fact that for any u € C, not just in R,

1 *° (x — u)?
——— ¢ = 1
V2mo? [oo P ( 202 ) e
‘We have

1 oo —u)?
ox(t) = s /_ Ooe“” exp (—@205 ) ) dx

1 o0 22— (2p + 20%it)x + p? p
= 727“72 i exp 552 45
1 2 it 2 _ 2 e e} o 2 13 2
3 exp <(M+0222) = ) / exp ( (@ ('u2+20 it)) > dz
V2no o o
p? + 20%iut — ot — p?
=ex
P 202

1
= exp (iut — 202t2)

oo

Remark 7.30.1. We have a function called cumulant generating function defined by log ¢ x (t). Normal distribution is the
only distribution we have learnt whose cumulant generating function has finite terms, which is:
242

1
log ¢x (t) = ipt — 57
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7.4 Inversion and continuity theorems

There are two major ways that characteristic functions are useful. One of them is that we can use characteristic function of a random
variable to generate a probability density function of that random variable.

Theorem 7.31. (Fourier Inverse Transform for continuous case) If a random variable X is continuous with a PDF fx and a CF
¢x, then

Frle) = = /OO Sy

:% .

at all point = which fx is differentiable.
If X has a CDF Fx, then

00 b
FX(b)—FX(a):% [ / =it gy (¢) da dt

Proof (Non-rigorous).
Let

"o

I(x) ! / eimd)x(t) dt = %/ e*“‘”/ e“yfx(y) dy dt

1 o 0o
Ig(aj) = g/ e—th/ e“ny(?D dy e—%EQtQ dt
s =

We want to show that I.(z) — I(z) when & — 0.

1 > > 12420 4y
)= [ [ e sy

_ \/2;? 217722 /_O; exp (_@2—;)2> Fx(y) /_O; exp <—W> dt dy

\/21? /_Z exp (—W) fx(y)dy

Let Z ~ N(0,1) and Z, = eZ. I.(x) is the PDF of €Z 4+ X. Therefore, we can say that f.zyx(x) = fx(z) when € — 0. O

Theorem 7.32. (Inversion Theorem) If a random variable X have a CDF Fx and a CF ¢x, we define Fx : R — [0,1] by

Fx(z) = = (Fx(z) + Fx(z7))

DN | =

Then for all a < b,

. . 00 efiat _ efibt

Remark 7.32.1. We can say F x represents the average of limit going from two directions.

Example 7.30. With the Inversion Theorem, we can now prove Theorem
Given two random variables X,Y. We want to first extend the Fourier Inverse Transform into multivariable case.

If ox v (s,t) = ¢x(s)dy(t), then for any a < b and ¢ < d,

. o - - 0o 0o (efias _ efibs)(efict _ efidt)
FX7y(b, d) = vay(b, C) = vay(a, d) + F‘X,y(a7 C) = Py ox (S)¢y(t) dsdt

oS} efzct _ 671dt

= (Fx(b) - Fx(a)) / oy () dt

PN 2mit
= (Fx(b) = Fx(a))(Fy(d) — Fy(c)) B

FX (b)?y (d) — FX (b)Fy (C) — FX (a)Fy(d) + FX (a)Fy (C)

From the definition of independent random variables, we prove that X Ll Y if ¢x v (s,t) = ¢x(s)py (t).
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Another way is to evaluate the convergence of a sequence of cumulative distribution function.

Definition 7.33. (Convergence of distribution function sequence [Weak convergence]) A sequence of CDF Fy, Fy, - -

- converges
to a CDF F', written as F,, — F, if at each point  where F' is continuous,

Example 7.31. Assume we have two sequences of CDF.

Fo(z) =4’ R Gn(z) =1 "
(z) {1’ 2> i (z) {1’ o

If we have n — oo, we get

1, >0 1, 2>0

F(x):{o, <0 G(x):{o, <0

This is problematic because F'(x) in this case is not a distribution function because it is not right-continuous.
Therefore, it is needed to define the convergence so that both sequences {F,,} and {G,} have the same limit.

We can modify a bit on the definition to say each distribution function in the sequence represents a different random variable.

Definition 7.34. (Convergence in distribution for random variables) Let X, X, X5, - - - be a family of random variables with PDF
F,Fy, Fy,---, we say X,, - X, written as X, L X oor X,= X, if F, —» F.

Remark 7.34.1. For this convergence definition, we do not care about the closeness of X,, and X as functions of w.

Remark 7.34.2. Sometimes, we also write X,, = F or X, £> F.

With the definition, sequence of characteristic functions can be used to determine whether the sequence of cumulative distribution
function converges.

Theorem 7.35. (Lévy continuity theorem) Suppose that Fy, Fy, - - - is a sequence of CDF with CF ¢, ¢, - - -, then
1. If F,, — F for some CDF F with CF ¢, then ¢, — ¢ pointwise.

2. If ¢, — ¢ pointwise for some CF ¢, and ¢ is continuous at O (¢ = 0), then ¢ is the CF of some CDF F and F,, — F.

We have a more general definition of convergence.

Definition 7.36. (Vague convergence) Given a sequence of CDF Fj, Fy,---. Suppose that F,(z) — G(x) at all continuity
point of G but G may not be a CDF. Then we say F,, — G vaguely, written as F,, — G.

Example 7.32. If

(@) =

— o= O

8 3~ 8
IV A A
S 8 3=

VAN

S

Q

)

Il
—N—
g S

8

N

o

We can see that F,, = G if n — oo and G is not a CDF.

Remark 7.36.1. In Lévy Continuity Theorem (2), the statement that ¢ is continuous at O can be replaced by any of the following
statements:

1. ¢(t) is a continuous function of ¢

2. ¢(t) is a CF of some CDF

3. The sequence {F,,}>2, is tight, i.e. for all € > 0, there exists M, > 0 such that

sup(F(—M.)+1—F,(M,)) <e
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Example 7.33. Let X,, ~ N(0,72) and let ¢,, be the CF of X,,. Then

str-en(e) s {2 17

7.5 Two limit theorems

In this section, we introduce two fundamental theorems in probability theory, the Law of Large Numbers and the Central Limit
Theorem.

Theorem 7.37. (Weak Law of Large Numbers [WLLN]) Let X, X3, -+ be i.i.d. random variables. Assume that E |X;| < oo
and EX; = p. We have:

Proof.
We recall the Taylor expansion of ¢¢(s) at 0. If E |§|k < o0 and s is small, then

k 5 .
9= 2 Gy el
For any ¢ € R, let ¢x, (s) = E(e™X1).
on) =2 (o (230 ) ) = (TTeow (124} = (= (o0 (")) = (o (1)) - (”ZEM(D)”
- (5 (3)

N ei/tt

By Lévy continuity theorem, we get that %2?21 X; 2> L. O

Theorem 7.38. (Central Limit Theorem [CLT]) Let X1, Xy, be i.i.d. random variables with E|X;|> < co and EX; = 4,

Var(X;) = 0?. Then
1 1 — Y1 Xi—np p
= - 5 — =&l TiE N(0, 1

Proof.
Let Y; = X =—E_ We have EY; = 0 and Var(Y;) = 1.

Zv 1X—nu Xn:

it 1t 2\
= (1 + —EY; + 5 <> E(Y?) +o ()) (Taylor expansion)
n

By Lévy continuity theorem, 2 Xiznp D, N(0,1). O
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Central Limit Theorem can be generalized in several directions, one of which concerns about independent random variables instead
of i.i.d. random variables.

Theorem 7.39. Let X1, X5, be independent random variables satisfying EX; = 0, Var(X;) = 02, E |Xi|3 < oo and such that

mZEiXﬂ%Oasn%oo *)
where (o(n))? = Var(3i—, X;) = > 02. Then
% Zn:Xi L, N(0,1)

Remark 7.39.1. The condition (*) means that none of the random variables X, can be significant in the sum.

n

1 L 2NL max 1
o 2 S oy 5 () G~ s

i=1

This theorem is a special case of Central Limit Theorem. It is more about the sum of Bernoulli random variables converges to a
normal distribution.

Theorem 7.40. (De Moivre-Laplace Limit Theorem) Suppose that X ~ Bin(n,p). Then for any a < b, as n — oo,

P<a<mgb> — ®(b) — D(a)

Proof.
Before we start the proof, we need to know about the Stirling’s formula:

n! ~V2mn (ﬁ)
e

Our target is to transform the PMF of Binomial random variable into the PDF of standard normal distribution. For 0 < k < n,

(Z)p’“(l —p)"h = k!(nnik)!p’“(l —p)"F

n n"

2nk(n — k) k*(n — k)n—kpk(]' —-p
n sk (] — )\
s (2) (vt

N mexp (—kln (fp) +(k—n)ln (ﬁ)) (k — p)

We know that EX = np and Var(X) = np(1 — p).
For any integer k we choose between 0 and n, there exists an arbitrary finite point ¢ such that k& = np + c¢\/np(1 — p).

To simplify, let ¢ = 1 — p. Using the Taylor series of In(1 + z) =z — 7”2—2 + ‘”—; +o(2?), we get:

(1)t~ g oo (= eymmmin (D) oy — i (/P )

2mnpq nq

e (e (c Lo 20 sotu)) e =) (o2 = £2 o7 )
= \/%quexp ((—cm — g+ 20 q+0(1)) + (=c*p+ cy/npq — %Czp + 0(1)))

)k (Using Stirling’s formula)

1 1,
v 2mnpgq eXPp <2C )

1 _ (k—np)?

Therefore, as n — 0o, % b, N(0,1) and the theorem is proven. O
np(1—p
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Remark 7.40.1. For better consideration, we may let X7, Xo,--- , X,, be random sample of a population X ~ Bern(p). We can
modify the above theorem into:
X —
Pla< =L <b| > 0 - o(a)
p(1—p)

n

7.6 Sampling

In a lot of cases, we do not know the actual distribution of the population. We can only predict the distribution based on the samples
we can get. This section is more close to statistics than probability, so we will not talk a lot about this.

Definition 7.41. A set of random variables {X;, X5, -+, X, } are called random sample of a random variable X with PMF or
PDF fx(z) and CDF Fx(x) if they are independent and identically distributed (i.i.d.).

1. Sample mean of X, denoted by X, is defined by:

Remark 7.41.1. Notice that the denominator is n — 1.

2

Theorem 7.42. Given a sample mean X of a random variable X. We have EX = y and Var(X) = &

Proof.

k=1 k=1 k=1
— 1 « S |
Var(X) = 3 ZVar(Xk) = % = 502
k=1

Theorem 7.43. Given a sample variance S2_; of a random variable X. We have ES2_; = ¢

Proof.
2 1 —0
Esnfl = E(Xz — X)
n—1 P
1 « _ -
= D> B — p)? +EX - p)? = 2B((X; — p)(X — )
i=1
1 n o .
Tn—1 Z(Var(Xi) + Var(X) — 2cov(X;, X))
i=1
n02 0.2 2 n 1 n
= - X, — X;
n—1+n—1 n—1;COV “n; J
no o2 2 n n
= - Xi,X*
n—1+n—1 n(n—l);jzzlcov( i)
no? o? 202 )

:n—1+n—1_n—1:0
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By using CLT, we can use this theorem to find an estimation of px if we know that value of o%.

Theorem 7.44. Let X1, Xs,--+, X,, be random sample from the population X ~ N(ux,c%). We have:

2
X ~N (MX, UX)

Proof.
By Theorem and the properties of Normal distribution,

X4+ X+ -+ X, ~ N(npx,no%)
By Lemma we have:

1 2
X:n<X1+X2+-"+Xn)NN</~LX’U§>

What if instead we want to find an estimation of 0% using px?

Theorem 7.45. Let X1, X, -+, X,, be random sample from the population X ~ N(p,,0%). Then we have:

> (K)o

=i 2

Proof.

Using the properties of normal distribution, for any i = 1,--- ,n, we have:
X, —
Ai THX N(0,1)

ox

Therefore, by definition of t-distribution,

n

> <XZU“X)2 ~x*(n)

i—1 X

Most often, we won’t even know the other parameter. How do we find ox if pux is unknown? We can use the following theorem.

Theorem 7.46. Let X1, X, -+, X,, be random sample from the population X ~ N(ux,0%). Then we have:

1. X and S2%_, are independent.

2.
(n—1)82
0'%( ~ Xz(n - 1)
Proof.

1. It suffices to prove that X and X; — X are independent for any i =1,2,---
— 2
We know that X ~ N(ux, %X) and X; — X ~ N(0, (n+1) Ux)

)

2. We may find that:

(n—l 2": -X)? & (X = px) + (px = X))? :zn:(qu—ux)Q - (X - px)?
i=1 i=1 o% i—1 0% o%
n 2 ~ 2
Z<Xiﬂx) (X —px
i=1 IX o
We know that SEL A N(0,1). Let U = % and V = (:/\/ﬁ). Use Theorem |7.45| and by definition, we have:
X
U+V ~x*(n) VX

We can use MGF to prove the theorem. Note that for any i = 1,2,--- ,n, X and X; — X are independent.

Myv(t) - _ =08,
7]\[2:;‘(;) = (1—2t) — U= 3 ~x*(n—1)

My(t) =
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Theorem 7.47. Let X7, Xo, -+, X,, be random sample from the population X ~ N(ux, 03(). We have:

X — px
T~ t(n—1)
\/H
Proof.
By Theorem and we let:
X — n—1)S2
U = (TXNJX ~ N(Oa 1) = ( 2) n-1 Xz(n — ].)
Vn 9x
By definition of t-distribution, we have: o
X — U
_PX ~t(n —1)
n—1 Vv
Vvn n—1
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Chapter 8

Convergence of random variables

We have mentioned the convergence in distribution in Chapter 5. However, this is not the only important type of convergence mode
of random variables. In this chapter, we will introduce some other convergence modes.

8.1 Modes of convergence

Many modes of convergence of a sequence of random variables will be discussed.
Let us recall the convergence mode of real function. Let f, f1, fo, -+ :[0,1] — R.

1. Pointwise convergence
We say f, — f pointwise if for all z € [0, 1],
fu(x) = f(x) as n — o0

2. Convergence in norm ||-||
We say f, — f in norm ||| if
Ifr — fll = 0asn— o0

3. Convergence in Lebesgue (uniform) measure
We say f, — f in uniform measure p if for all ¢ > 0,

pw({zel0,1]:|fn(z) — f(x)] >€}) 2 0asn — o0

We can use these definitions to define convergence modes of random variables.

Definition 8.1. (Almost sure convergence) We say X,, — X almost surely, written as X, S5 T

P{weN: X,(w) = X(w) asn — oc0}) =1 or P{weN: X,(w) A X(w)asn — c0}) =0

Remark 8.1.1. X,, =% X almost surely is an adaptation to the pointwise convergence for function.

Remark 8.1.2. Very often, we also call almost surely convergence:
1. X, — X almost everywhere (X, =% X)

2. X, — X with probability 1 (X,, - X w.p. 1)

Definition 8.2. (Convergence in r-th mean) Let r > 1. We say X,, — X in r-th mean, written as X,, = X, if

E|X,—X|" > 0asn— oo

Example 8.1. If r =1, we say X,, — X in mean or expectation. If r = 2, we say X,, — X in mean square.

Definition 8.3. (Convergence in probability) We say X,, — X in probability, written as X, LN X, if for all € > 0,

P(|X, —X|>e) > 0asn— o

93



94 CHAPTER 8. CONVERGENCE OF RANDOM VARIABLES

Definition 8.4. (Convergence in distribution) We say that X,, — X in distribution, written as X, D, X, if at continuity point
of P(X < z),

F.(2)=P(X, <z2)>PX <z)=F(z)asn — o

Before we tackle the relationships between different convergence mode, we first need to introduce some formulas.

Lemma 8.5. (Markov’s inequality) If X is any random variables with finite mean, then for all a > 0,

E|X
P(X| > o) <
Proof.
X E|X

Remark 8.5.1. For any non-negative function ¢ that is increasing on [0, 00),

P(IX] > ) = Bo(|X]) > 0(a)) < E(fjf(f'”

Following inequality needs Holder inequality (In Appendix C) in order to be proven. Therefore, we will not prove it here.

Lemma 8.6. (Lyapunov’s inequality) Let Z be any random variables. For all > s > 0,

1
r

(E|Z)*)* < (E|2]")

We also need to know how we can obtain almost sure convergence.

Lemma 8.7. Let
Ape) ={w € Q: | Xn(w) — X(w)| > €} Bn(e) = | 4nle)

We have

1. X, 2% X if and only if lim,, 00 P(B(g)) = 0 for all € > 0

2. X, 225 X if 3220 P(Ay(e)) < oo for all € > 0

Proof.

1. We denote C ={w € Q: X,,(w) - X(w) as n — c0}.
If w € C, that means for all € > 0, there exists ng > 0 such that |X,,(w) — X (w)| < € for all n > ny.
This also means that for all € > 0, | X,,(w) — X (w)| > € for finitely many n.
If w € CC, that means that for all £ > 0, | X,,(w) — X(w)| > ¢ for infinitely many n. (w € 2_, U2, An(e))

Therefore,
U Uae

e>0m=1n=m

If P(CC) = 0, then for all £ > 0,

]P’(ﬁ G An(s)> =0

We can also find that

P(ﬂ UAn(s)>—0 — Mcﬂ)—zp(Um UAn(s)>—IP’<Uﬂ UAn<11€)>—O
m=1n=m e>0m=1n=m k=1m=1n=m

Therefore, X,, =% X if and only if lim,, ;0 P(B,,()) = 0 for all € > 0
2. From (1), for all € > 0,

iP(An(@) <oo = lim i P(A,(e) =0 = lim P(Bp(s)) =0 = (X, 25 X)
n=1 n=m
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Lemma 8.8. There exist sequences that

1. converge almost surely but not in mean

2. converge in mean but not almost surely

Proof.

1. We consider
X _ {n3, Probability = n—?2

0, Probability =1—n=2

By applying Lemma [8.7] for some ¢ > 0.
1
P(|Xn(w) = X(w)| > ) = — D P(IXn(w) - X(w)] > ) < o0
Therefore, the sequence converges almost surely. However,

1
E|X, — X| = n? (2>:n—>oo
n

Therefore, the sequence does not converge in mean.

2. We consider

_J 1, Probability =n!
" 10, Probability =1—n"1

In mean, as n — oo we have

IEXn—X:1<1>:—>O

n
However, by applying Lemma if e € (0,1), for all n
P(Bn(e)) =1— li_>m P(X,, = 0 for all n such that m <n <r)

_ -1
*1313201__[ i

=1- lim 5140

r—00 T
Therefore, the sequence does not converge almost surely.

O

We can now deduce the following implications. Roughly speaking, convergence in distribution is the weakest among all convergence
modes, since it only cares about the distribution of X,,.

Theorem 8.9. The following implications hold:
a) (X, 25 X) = (X, 5 X)

b) (X, 5 X) = (Xp 5 X)

©) (Xn>X) = (Xn 2 X)

1.
(

2. If r > s > 1, then (X,, & X) = (X, > X)

3. No other implications holds in general.
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Proof.
1. (a) From Lemma for all & > 0,

Therefore, (X, 2% X) = (X, LN X)
(b) From Markov’s inequality, since r > 1,
. E|X, — X|"
0 < P(|X _Xn| > 5) :P(|X _Xn| > 5T) < %
Therefore, if X,, 2 X, then E|X,, — X|" — 0. We have P(|X — X,,| > ¢) — 0 and thus X,, — X.
()
PX,<2)=PX,<z,X<z+4+e)+PX, <z, X >zx+¢)<PX <zx+¢e)+P(X,— X|>¢)
B(X <) <B(X, <y +6) +B([Xn - X| > )
P(X, <z)

g B

<
>

Since X, L X, P(|X,, — X| >¢€) = 0 for all € > 0. Therefore,
P(X <z —¢) <liminfP(X, <z) <limsupP(X,, <z) <P(X <z+e¢)
n— oo

n—oo
By having ¢ — 0,
P(X <z) <liminf P(X,, < z) <limsupP(X, <z) <P(X <x)

n—oo n—oo
Therefore, lim,, o, P(X,, < z2) = P(X < z) and thus X, =Ny'S
2. Since X,, & X, E|X,, — X| — 0 as n — oo. By Lyapunov’s inequality, if r > s,
E|X, - X|°<(E|X, - X|")* =0

3. Let Q={H, T} and P(H) =P(T) = 5. Let

(SIS

L,

w=H 0, w=H
0, w=T w=T

L,

Xom(w) = { Xomt1(w) = {

Since F'(z) and F,(z) for all n are all the same, X, L, X. However, for ¢ € [0,1], P(|X,, — X| >¢) A 0.

Therefore, (X, EEN X) == (X, 5 X).
Let r =1 and

1
n

X, = n, probab%l?ty = % X —0
0, probability =1 —
We get that P(|X,, — X| >¢) = L — 0. However, E|X,, — X| =n (%) =1 4 0. Therefore, (X, LX) = (x,5X).
Let Q = [0,1], F = B([0,1]) and P be uniform.
Let I; be such that 1, (m-1)+15 Limm-1)+2: """ s [im(m—1)+m 1S a partition of [0, 1] for all m.
We have I; = [0,1],IU I3 =[0,1],---. Let

1, wel,

c X(w)=0forallwe N
0, wel;

Xn(w) = 1In(w) = {

For all € € [0,1], P(|X,, — X| > &) =P(I,) = 2 — 0 for some n if n — oo.
However, for any given w € 2, although 1 becomes less often due to decreasing probability, it never dies out.
Therefore, X, (w) A 0= X(w) and P{w € Q@ : X,,(w) = X(w) as n = oo}) = 0, and thus, (X, 5 X) == (X, 2 X).

Ifr>s>1,let

__Jmn, probability = n~ ()

n — r+s X = 0
{O, probability =1 — n— (%)

E|X, — X|°=n° (n_(%s)) =n7 50 E|X, - X|"=n" (n_(%s)) =n7 = 0

Therefore, if r > s > 1, (X,, > X) =~ (X, & X).
We have proven that (X, =*% X) =4 (X, & X) and (X,, & X) =& (X, =25 X) in Lemma

(X <z—¢)-P(X, - X|>e) (y=z—¢)
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We can easily obtain this lemma.

Lemma 8.10. The following implications hold:

L (X, 5 X) = (X, 5X)

Proof.
Just use the Theorem [8.9 with » = 1 and you get the answer. O

Some of the implications does not hold in general but they hold if we apply some restrictions.

Theorem 8.11. (Partial converse statements) The following implications hold:
1. If X, b, ¢, where c is a constant, then X, e

2. If X, > X and P(|X,| < k) =1 for all n with some fixed constant k& > 0, then X,, = X for all 7 > 1.

Proof.

1. Since Xn-D+X, P(X, <z) > P(c<z)asn— oo. Forall e >0,
P(|X,—c|>e)=P(X, <c—e)+P(X, >c+e)=P(X,<c—¢e)+1-P(X,, <c+e)
We can get that P(X,, <c—¢) 5> P(c<c—¢)=0. For P(X,, < ¢+ ¢),

P(X,<c+2)<P(X, <c+e)<P(X, <c+2
2

]P(Xngc+%)—>IP’<c§c+%):1 P(X, <c+2)—=Plc<c+2)=1

Therefore, P(X,, < ¢+¢) — 1. We have
P(|Xp—c|>e) 5 04+1-1=0

Therefore, X, e

2. Since X,, = X, X,, 2 X. We have P(|X,,| < k) = P(|X| < k) = 1.
Therefore, for all € > 0, if | X,, — X| <e, | X, — X]| < |X,| + |X]| < 2k.

E|X,—X["=E (X, — X|"1x,_x<c) + E (| X0 — X" 1jx, _x|>¢)
S €TE (1‘Xn7X‘§€) + (2]{:)TE (1‘anx‘>€)
<e"+ ((2k)" —eNP(| X, — X| > €)
Since X,, 5 X,asn — o0, E|X, — X|" — ¢e". If we send ¢ — 0, E|X,, — X|" — 0 and therefore X,, = X.
O

Note that any sequence {X,} which satisfies X, 5 x necessarily contains a subsequence {X,,, : 1 <14 < oo} which converges almost
surely.

Theorem 8.12. If X, B x , then there exists a non-random increasing sequence of integers ni,ns,--- such that as i — oo,

X, =5 X

Proof.
Since X, = X, P(|X,, — X| >¢) = 0asn — oo for all € > 0.
We can pick an increasing sequence ni,ns,--- of positive integers such that

P(|X,, — X|>i7 ') <i™?

For any ¢ > 0,

S OP(Xp, - X[>e) < Y P(IX,, - X|>iTH) <) i? < o0
i

i>e1 i>e1

By Lemma we get the X, 22 X asi— 00 O
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In all above cases, we only deal with one random variable. What can we do if it involves two or more random variables? We first try
to deal with cases when one converges to a constant.

Theorem 8.13. (Slutsky’s Theorem) If X, L. X and Y, LN ¢, for a constant ¢, then:
L. X, +Y, 2 X+c

2. XY, 2 Xc

3. %o 2 Xifc#0.

Proof.
1. Suppose that ¢ > 0 and pick § such that 0 < § < ¢. We can find N such that P(|Y,, — ¢| > §) < ¢ for n > N. For all z, we have:

P(X,+Y,<z2)<PX,+Y,<z,Y,—c <) +P(|YVn—¢c| >0) <P(X, <xz—c+d)+0
PX,+Y,>2)<P(X,+Y,>z,Y,—¢c <) +0<PX,>x—c—06)+¢

By sending n — oo and § — 0, we find that P(X,, +Y,, < x) —» P(X 4 ¢ < ) when ¢ > 0.

We can use the similar argument to prove that P(X,, + Y, <z) = P(X + ¢ < x) when ¢ < 0.

Suppose that ¢ = 0. We may define an arbitrary small 6 > 0 and a number N such that P(|Y,,| > §) < ¢ for n > N. For all z,
we have:

P(X, +Y, <)

<P(X, + Y, <, Vo] <68) 4+ P(|[Ya] > 0)
P(X,+Y,>z)<P

<
(Xn + Y S a,|Ya] <0) +P(|Yn] >0) <

By sending n — oo and § — 0, we find that P(X,, + Y, <z) = P(X + ¢ < z) when ¢ = 0.
Therefore, X,, +Y,, Dx +c.

2. Suppose that ¢ > 0 and pick § such that 0 < § < ¢. We can find N such that P(|Y,, — ¢| > ) < § for n > N.
For all x, we have:

P(X,Y, <z) <P(X,Y, <,|Y, — | <8) +P(|Y, —¢| > 6) <P (Xn < ”“"(5) +6

P(Xnyn>x)gP(XnYn>x,|Yn—c|§5)+5§P<Xn>15>+5
C

By sending n — oo and § — 0, we find that P(X,,Y,, < z) — P(Xc¢ < x) when ¢ > 0.

We can use the similar argument to prove that P(X,Y,, < z) — P(Xc¢ < z) when ¢ < 0.

Suppose that ¢ = 0. We many choose an arbitrary small number ¢ > 0 and a number N such that P(|Y,,| > §) < ¢ for n > N.
For all x, we have:

P(—6X, <z)+6

P(X,Y, <) <P(X,Y, <z,|V,| <8)+P(|Y,| > 0)
<P P(5X, > )+ 6

<
P(X,Y, > z) < P(X, Y, >z, |Vy| < 8) + P(|Y,] > 6) <

By sending n — oo and § — 0, we find that P(X,,Y,, < z) — P(0 < z) when ¢ = 0.
Therefore, X,,Y,, D, xe.

3. Tt suffices to prove that Y, ! Setlity, B ¢, or equivalently by Theorem Y, 2 e
¥y, 2o, then P(Y,, < z) - P(c < x) as n — oo for all xz. When x > 0, as n — o0,

IP’(;TL§x>:P(Yn<0)+P(Yn2;>—>P(c<0)+P(c2i>:P(i§x>

When z < 0, as n — oo,
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Theorem 8.14. (Continuous mapping theorem) Given a sequence of random variables {X,} and a random variable X. Let
f be a function has the set of discontinuity points Dy such that P(X € D) = 0. We have:

1. If X,, 2 X, then f(X,) 2 f(X).

2. If X, = X, then f(X,) = f(X).

3. If X,, 255 X, then f(X,) 22 £(X).

Proof.

1. Current knowledge in this notes does not suffice to prove (1). Search Weak convergence of measures in Wikipedia to start.

2. We fix an arbitrary € > 0. For any § > 0, we consider a set Bs defined as:
Bs = {x : « ¢ Dy and there exists y such that |z —y| < d and |f(z) — f(y)| > ¢}
Suppose that |f(X) — f(X,,)| > e. This means either |[X — X,,| > §, X € Dy or X € B;s. Therefore,

P(|f(Xn) — f(X)| > ) < P(|X, — X| > 8) + P(X € Dy) + P(X € Bs)

Since X, LN X, P(|X, —X|>0d) > 0asn— oco. As d — 0, Bs reduces to an empty set. By assumption, P(X € Dy) = 0.
Therefore, as n — oo and § — 0,
P(lf(Xn) = f(X)| > ) =0

We generalize to all € > 0, we get f(X,,) 5 f(X).

3. By definition of limit,

PHw e Q: f(Xn(w)) = f(X(w)) asn — o0}) > P{w e Q: f(X,) = f(X)asn —ocoand X & Dy})

>
>PH{weN: Xp(w) - X(w)asn —ooand X € Dy})
Since P(X € Dy) = 0 by assumption, since X, 25 X,

PlweQ: X, > Xasn—ocoand X ¢ D;}) =P{we Q: X, (w) > X(w) asn —o0}) =1

Therefore, P({w € Q : f(X,(w)) — f(X(w)) as n — oo}) = 1 and thus f(X,) =2 f(X).

8.2 Other versions of Weak Law of Large Numbers

We can revisit and introduce some other versions of weak law of large numbers and their applications.

Theorem 8.15. (L2—WLLN) Let X1, Xo,---, X, be uncorrelated random variables with EX; = u, Var(X;) < ¢ < oo for all i. We

have:
1 « 5
L2 Xi=n
n
1=1
Proof.
1 n 2 1 n n 2 1 n ) n
c
E (nz;Xl —u) = SE (;xi ~E (2}(1)) = — Var (;XJ = E;Var(){i) <=0
Therefore, L 31" | 2, L. .

Remark 8.15.1. From this theorem, we can immediately find that

1 & 1 &
(5] = (ixss)

Remark 8.15.2. Note that in the i.i.d. case, we do not require the existence of variance.
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There are wide range of applications for just Weak Law of Large Numbers.

Example 8.2. (Bernstein approximation) Let f be continuous on [0, 1] and let
(’I’L)xn(l _ x)n—mf (@)
m n

sup |fn(z) — f(z)| — 0
z€[0,1]

(Bernstein polynomial)

We want to show that as n — oo.

Remark 8.15.3. Let € [0,1]. To better approach this question, we can let X; 5, X2 4, -

,Xn o ~ Bern(z) be iid. random
variables. Let V,, , = Y | X; » ~ Bin(n, z).

We know that by WLLN, Yze & 4.

By continuous mapping theorem, f (Y"””

n

) 5 ).

Example 8.3. By obtaining that f (%) L f(z), since there exists a number M such that || f||cc < M (due to f being continuous
at [0, 1]),
Yn,a: Yn,;v _ Yn,w Yn,m
(s (52) -] sls (B52) - 0] =2 (1 (52) =10 e )+ (1 (52) =709 oo

Yn x
<5—|—2M]P’( = — >55>
n
Yn T Yn z
sup [E (f <)) — f(x)|=e+2M sup (P( Tne T 65)>
z€[0,1] n z€[0,1] n
E Yn T = ?
<e+2M sup % (Markov’s inequality and Lyapunov’s inequality)
z€[0,1] n?dz
Var(Yy, ) z(1—x)
<e+2M sup () =¢ec+2M sup < EY, . =nz
z€[0,1] ”253 z€[0,1] ”53 ( )
< -
<ctom
. Yn xr
limsup sup |E (f ()) —fx)|<e—=0
n—oo z€(0,1] n

Therefore, we can find that sup,co 17 fn(z) —

f(z)| = 0asn— co.
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Example 8.4. (Borel’s geometric concentration) Let p,, be the uniform probability measure on the n-dimensional cube [—1, 1]™.
Let H be a hyperplane that is orthogonal to a principal diagonal of [~1,1] (H = (1,---,1)%).

Let H, = {x € [-1,1]" : dist(z : H) < r}.

Then for any given € > 0, i, (H. /z) — 1 as n — oo.

We can prove this by letting X7, Xo, -+ ~ U[—1,1] be i.i.d. random variables and EX; = 0. Let X = (X1, Xa,--- , X,,).

For all B € [~1,1]", un(B) = P(X € B) = Po X~ !(B).

pin (e ym) = P(dist(X, H) < ev/n)

:p(mgg\/ﬁ>
" Ss)

1A, D2
—P (‘Z?_l Xi
=P (’Zi—l X x| < 5)
n
—1 (WLLN)

We do not necessarily need to stick to a given sequence of random variables X7, X5, -+ in Law of Large Numbers.

Theorem 8.16. (WLLN for triangular array) Let {X,, j}i<j<n<oo be a triangular array. Let Y, = > | X, ;, u, = EY,, and
02 = Var(Y,,). Suppose that for some sequences b,

o2 Yo — L 2

Tn _g(InZHn)

%5

Then we have

Yn — HUn P
— —0
bn
Proof.
Yn — HUn 2 Var(Yn)
E = -0
( bn ) b%

Therefore, Y —tn 2 0 and thus Yu—tin Poo. -

Remark 8.16.1. We should choose b,, that no larger than EY,, if possible.
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Example 8.5. (Coupon collector’s problem) Let X7, Xo,- -+ be i.i.d. uniform random variables on {1,2,--- ,n}.

Let 7} = inf{m : [{X1, X2, -+ , X;n}| = k} be the waiting time for picking k distinct types.

What is the asymptotic behavior of 7,7

It is easy to see that 7" = 1. By convention, 7§ = 0.

For 1 <k <n,let X, =7 — 7, be the additional waiting time for picking k distinct types when we have k — 1 types.

Notice that .
= Xnk
k=1

‘We know that

-1
-1 -1 —1
P(Xp,=14) = (k - ) (1 — kn) = Xn 1 ~ Geom (1 — K )

n

We claim that X, ;, are independent for all £. For a constant c,

n n —1 n
ET;L:ZEXWC:Z<1—]€;1) :Z%anogn
k=1

k=1 m=1
. n n k—]. —2 k—l —1 n k—l _—)) n n2 ,
Var(m)ZVar(Xn,k)Z<<1n) - (1 - > ) < (1 . > Y ca
k=1 k=1 k=1 m=1
By WLLN, if we choose b,, = nlogn, then we have
V n n __ n B n
ar(Tn) 50 — Tn Zm_l m K 0
b2 nlogn
" P
Therefore, Toen 1

Example 8.6. (An occupancy problem) r balls are put at random into n bins. All n" are equally likely.
Let A; be event that the i-th bin is empty and N,, be number of empty bins = 2?21 1y,.
How to prove that if = — c as n — oo,

We can see that

i=1 i#j
1 P 1 2r 2 r 1 2r
:n<<1—) - <1_) >+n(n_1> ((1_) - <1_) )
n n n n
= o(n?)
By using WLLN, let b, = n,
Var(NV,,) N, —EN,, p
— ) = ———" =0
b2 n

P _
Therefore, &= = ¢,

n
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8.3 Borel-Cantelli Lemmas

Let Ay, As,--- be a sequence of events in (Q, F). We are more interested in

liTIlr;sotip A, ={A, io} = n U A,

m n=m

Theorem 8.17. (Borel-Cantelli Lemmas) For any sequence of events A,, € F,

1. (BCI) If >7° | P(A,,) < oo, then
P(A, i.0.) =0

2. (BCII) If >°7 | P(A,,) = 00 and A,,’s are independent, then

P(A, i0.) =1

Proof.

LIE Y P(A,) < oo,

m—roo

P(A, i0.)= lim P ( G An> < lim i P(A,) =0

2. If 7 | P(A,) = o0 and A,,’s are independent, we have

P(U N 48) = gz () ) = o i #( () 48) =t o T 20080 o TL0- m00

m=1n=m n=m n=m

< 1 —P(An) = - = —r<eTifz>
< n}gréo H e mlgnoo exp ( Z ]P’(An)> 0 (I-z<e®ifz>0)

n=m

P(4, i.0.) (ﬂ UA)lIP’(G ﬁAE)

m=1n=m m=1n=m

Remark 8.17.1. We can say that BCII is a partial converse statement of BCI.

Remark 8.17.2. i.o. is an abbreviation of ”infinitely often”. Similarly, f.o. is an abbreviation if ”finitely often”.

We will now explore how we can apply Borel-Cantelli Lemmas in multiple applications.

Example 8.7. (Infinite Monkey Problem) Assume there is a keyboard with N keys, each with distinct letters. Given a string of
letters S of length m. We have a monkey which randomly hits any key at any round.

How do we prove that almost surely, the monkey will type up the given string S for infinitely many times?

Let Ej be the event that the m-string S is typed starting from the k-th hit. Note that Ej’s are not independent.

In order to produce an independent sequence, we can consider E,,;+1. where each string is m letters apart from next one.

For any 4, P(E;) = ()" By BCII,

D P(Emks1) =00 =5 P(Eppy1 i0.) =1
k=0

Therefore, P(E}, i.0.) =1
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Recall that if X, BEx , there exists a non-random increasing sequence of integers ni,ng,--- such that X,, 2%, X as i — o0.
We can use Borel-Cantelli Lemmas to prove a theorem that is pretty similar.

Theorem 8.18. X, P X if and only if for all subsequence X, (,,), there is a further subsequence

Xo(mp) — X

Proof.

(=) Let g; be a sequence of positive numbers such that e, — 0 if k¥ — oo. For any k, there exists an n(mg) > n(mg_1) such
that
P(| X (my) — X| > &) <27F (X, = X)

Since Y5 P(| Xo(my) — X| > ex) < o0, By BCI,
P(|X,L(mk) — X| > e 1.0)=0 P(|X,L(mk) — X| >¢ep fo)=1
Foralle > 0,¢e, <eforall k> ky. If g <e,
{[ Xy = X[ > ex} 2 {| Xy — X| > €}
Ifwe {|Xn(mk) — X| > ¢} for finitely many k, then w € {‘Xn(mk) — X| > ¢} for finitely many k. Therefore, for all

e>0
P(|X7L(mk) — X| > 10) =0

(<) Foralle>0,let a, =P(|X,, — X| > ¢).
For all n(m), there exists n(my,) such that X,,,,) — X. We have

a.s. P
(Xn(mk) — X) — (Xn(mk) — X) — An(my,) — 0

Therefore, for any a,, and a,,(,,), there exists further a,(y,,) — 0.
We have a, — 0 = (X,, — X).

We have a theorem that have conditions quite similar to Law of Large Numbers. However, notice that E|X;| = oo here.

Theorem 8.19. If X;, X5, - are i.i.d. random variables with E | X;| = oo, then

n—oo M 4

1 n
P(|X,| >nio.)=1 P < lim — " X; exists in (—oo,oo)> =0
=l

Proof.

0o o0
E|X;| = / P(|1X1| > t)dt < Y P(|X:1] > n)
0 n=0
Since {|X,,| > n} is a collection of independent events, by BCII, P(|X,,| > n i.0.) = 1.
For the second statement, let Y,, = > "' | X; and C' = {w € Q : lim,,_, %Yn (w) exists in R}.
Assume that w € C, then
Yo(w) Yop(w) _ Y (w) Xny1(w)

n n+1  n(n+1) n+1

Since % converges, w — Y";fl(lw) — 0 and n’?z(fl)) — 0. We get that X”#ﬁw) — 0.

However, that means |X,, 41| < n+ 1 for an arbitrary large n. Therefore, w ¢ {|X,,| > n i.0.}.
From that, we get that P(C) = 0 since P(|X,| > n i.0.) = 1. O
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The next result extends BCII.

Theorem 8.20. If A, A,,--- are pairwise independent and > > | P(A,,) = oo, then as n — oo,

Zn =1 14 a.s.
e e |
2 m=1P(Am)

Proof.

Let X,, =14,,Y, = Zl 1 X; and EY,, = Zm 1 P(An).

Notice that pairwise independence is already enough for cov(X;, X;) = 0 for all i # j.
Using Markov’s inequality, for any € > 0, we get as n — o0

Y, — EY, E(Y, —EY,)?  Var(¥,) "\ Var(la,) <= Elu 1
— < = pr— m = m =
F (‘ EY, |~ 5) = 2(EY,)? 2(EY,,)2 2 2(EY,,)2 2 0

2([EY,)?  EY,

=1 m=1

Yo EY,, Foo.
Now, we can choose a deblrable subsequence to prove almost surely convergence. Let ny = inf{n : EY,, > k?}.
We can get that EY,,, > k? and EY,,, = EY,, 1 + E1 An, < k? + 1. Again by Markov’s inequality,

Therefore, we get that

- Yy, — EY, S | - 1
P I ) > < - < - <
> ( )< e <Y ey <%
k=1 k=1 k=1
By BCI, we have that as k — oo,
Ynk a.s. Y
-1 P —lask—
EY,, (EYM as °°>
Let C ={weQ: ""(w) —1as k — oo}. For w e C, for all nj, <n < njyq, we have Yy, (w) <V, (w) <Y, (w).
Yo, () < Yo (w) < Yo +1(w)
EY, .1 =~ EY, — EY,
ny, (W ny, (W EY,, e t+1(w Yo, +1(w) (EYn, 41
Since ]EY’“(J = JEikﬂEk) (EYnkL) — 1 and E{;* J(r1) = E;’;il) ( EY:: ) — 1, we get that for any w € C,
Y, (w)
—1
EY,

Therefore, we have

As a result, we get that

O

If the events Aj, Ay, --- in the Borel-Cantelli Lemmas are independent, then P(A) is either 0 or 1 depending on whether > P(A4,,)
converges. The following is a simple version.

Theorem 8.21. (Borel Zero-one Law) Let A1, Ag,--- € F and A= 0(A4;,As,---). Suppose that
1. Aec A

2. A is independent with any finite collection of A;, As, - - -

Then P(A) =0 or 1.

Proof (Non-rigorous).

Suppose that Ay, Az, - -+ are independent. Let A = limsup,, A,.

We know that A = ~_, U>",, An. Therefore, A € A=0(A;,As,--).

For all k, we can also have A = nf::k-u U2, Ap. Therefore, A is independent with any A; € o(Ay, Ag, -, Ag).

Setting k — oo, we have that A is independent of all elements in A, which also include itself.

Therefore, P(A) = P(AN A) = (P(A))? = P(A)=0or 1. O
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Let X1, X5, -+ be a collection of random variables. For any subcollection {X; : i € I}, write o(X; : i € I) for the smallest o-field
with reference to which each of X; is measurable.

Definition 8.22. Let H,, = 0(Xp+1, Xnt2, -+ ). We have H,, D Hpy1 2 ---. Tail o-field is defined as

Hew = [

Remark 8.22.1. If £ € H,, then FE is called tail event.

Example 8.8. {limsup,,_,. X, = oo} is a tail event.

Example 8.9. {} X, converges} is a tail event.

Example 8.10. {) X, converges to 1} is not a tail event.

We get another version of zero-one law.

Theorem 8.23. (Kolmogorov’s zero-one law) If H € H,, then P(H) =0 or 1.

We continue to explore more into tail events.

Definition 8.24. We define tail function to be Y : Q@ — RU{—o00, oo}, which is a generalized random variables that is a function
of X1, X5, --. It is independent of any finite collection of X;’s and is H,.-measurable.

Example 8.11. Let Y (w) = limsup,,_,, Xp(w) for allw € Q. Fy(y) =P(Y <y)=0or 1 for all y € RU {—00, 00}
{Y <y} is a tail event.

Theorem 8.25. If Y is a tail function of independent sequence of random variables X7, X, -, then there exists —oco < k < o0,

P(Y =k)=1

Again let X7, X5, -+ be iid. random variables and let Y, = >""" | X;.

Recall that if E|X;]| < oo,
1
P (nlggo - ZX - ]EX1> =1

=1
IfE |X1‘ = 00,
I :
P <nh_>n;0 - ;XL exmts) =0

Using tail function, the random variables are not necessarily identically distributed.

Theorem 8.26. Let X, X5, - be independent random variables. We have:

R )
P (nlggo - .ZXi ex1sts> =0orl

=1

Proof.
Let Z; = limsup,,_, % Z?:l X; and Zy = liminf,,_, % 2?21 X;. We claim that both Z; and Zs are tail functions of X;’s. For any
k,

k n k n
1 1 1 1
Z1(w) = limﬂsup <n E Xi(w) + - E Xi(w)> Zs(w) = liér_l)ioléf (n E Xi(w) + - E Xi(o.))>
nree i=1 i=k+1 =1 i=k+1

Therefore, both Z; and Z; do not depend on any finite collection of X;. We say that {Z; = Z5} is a tail event.
Therefore, by Kolmogorov’s zero-one law.

n—oo N, 4

1 n
P ( lim — ZXi exists) =P(Z1=25)=0or1
i=1
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Example 8.12. (Random power series) Let X7, X, -+ be i.i.d. exponential random variables with parameter A = 1. We consider
a random power series
o0
p(zw) = Y Xn(w)z"
n=0

The formula for radius of convergence is
R(w) =

lim sup,,_y o0 | X ()|

We can get that R(w) is a tail function of X;’s. Therefore, there exists C' such that P(R = C) =1 (R = C almost surely)
We want to find the value of C.
We claim that C' = 1.

P (1imsup|Xn|71l = 1) =1

n— oo

It suffices to show that for all € > 0,

P(limsup|Xn"1L<1—|—5):1 ]P’(' n"ll>1—€>:1
n—00 n—00

We first prove the first one.

oo

ip(|Xn|%>1+s) ZIF’|X|> (1+¢)" Z (e

n=1 n=1 n=1
Therefore, by BCI,
]P’(|Xn|% >14¢i0)=0 = P (limsup|Xn711 <1 —i—e) =1

n—o0

Similarly,

M8

P (|Xn‘% >1 —5) = ;P(|Xn| >(1-¢)") = ;e—(l—sw ~

3
Il
—

Therefore, by BCII,
]P’(|Xn|% >1l—cio)=1 =P (limsup|Xn711 >1— 5) =1

n— oo

By sending € — 0, we get

n— oo

P (hmsup |X,,L|% = 1) =1l

Therefore, C' = 1.

8.4 Strong Law of Large Numbers

We recall the Weak Law of Large Numbers. Let X7, Xo,--- be a sequence of i.i.d. random variables with E(X;) = p. As n — oo,

1 1<
ﬁZXig“ ﬁZXiE}M
i i=1

By name, WLLN indeed has a stronger version. It is called Strong Law of Large Numbers. We prove one of the versions of SLLN.

Theorem 8.27. (Strong Law of Large Numbers [SLLN]) Let X;, X5, - be ii.d. random variables with EX; = p and

E|X;| < co. We have:
1 n
~) X S
"=t

Note that the proof for SLLN is very complicated, and we will not prove it here. Instead, we will prove a different version of SLLN.
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Theorem 8.28. (SLLN with EX} < c0) Let X7, X5, -- be i.i.d. random variables with EX; = 0 and E(X{) < co. We have:

1< as
g;x}—m

Proof.

n 4 n
IE(ZXZ) = Z EX; X; XX,
=1

i4,k,b=1

The expectation is non-zero if there are 2 pairs of the random variables with same value.

(i

Therefore, we get that for all € > 0

EY;! =3) EX/EX? +Z]EX4 O(n?)
i#]

> 5) < ( ZX) = (;) (Markov’s inequality)
>

1 n
- E X;| > €> < 00
n=1 =1

Therefore, £ 3" | X; 255 0. O

Theorem 8.29. (SLLN with EX? < o) Let X7, X5, -- be i.i.d. random variables with EX? < oo and EX; = . We have:

1 < 9 1 — a.s

Proof.
Let Y, = > ; X;. We first show convergence in mean square. Since EX? < o0, as n — o0,

Y, > E(Y, — np)? Y, X
E(n—ﬂ> _ (Y 2nu) :Var(2 ) :Var( 1) 0
n n n

For the almost Sure convergence, we know that convergence in probability implies the existence of almost sure convergence of some
subsequence of n to u. We write n; = i2. By using Markov’s inequality, for all € > 0,

Yz—' E|Y;: — Var(Y;2 Var(X
ZP(' o) sy e

2%, 1. However, we need to fill the gaps.
We suppose the X; are non negative. We have Y;> <Y, < Y41 ifi2 <n<(i+1)>=%
We can get that

Ve
(i+1)2 —

Y,
n

Y, . 2 . .
2 2%, 1, by having Gz — L as i — oo, we get that whenever X; are non-negative, as n — 00

Yo as.
- N
n

For general X;, we can write X,, = X,” — X~ where

X (w) = max{ X, (w),0} X, (w) = —min{ X, (w),0}

n

Therefore, both X7 (w) and X, (w) are non-negative.
Furthermore, X,7 < |X,| and X,; < |X,|. Therefore, E(X, )? < oo and E(X,,;)? < co. By previous conclusion for non-negative
random variables, we get as n — oo,

1 n n )
=_ Xt - X7 | 25 EX —EX;T =EX
n (; 1 ; 1 > — 1 1 1
Y, &S

Therefore, <= — p. O
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Why do we need SLLN? There are a lot of applications that specifically need SLLN.

Example 8.13. (Renewal Theory) Assume that we have a light bulb. We change it immediately when it burnt out.

Let X; be the lifetime of i-th bulb and T,, = X; + X5 + --- + X,, be the time to replace the n-th bulb.

Let N; = sup{n : T, <t} be number of bulbs that have burnt out by time ¢t. Tk, is the exact time that Ny’s bulb burnt out.
Since we are dealing with practical bulb, assume that X;, X5,--- are i.i.d. random variables with 0 < X; < co and EX; < oo.

Theorem 8.30. Let EX; = . As t — oo,

Proof.
Since TNt <t< TNt+l,

TNt < i < TNH-l Ny +1
Ny = Ny Ne+1 Ny

By SLLN, we know that 2= =% ;. Since I and I,

= are the same sequence, we get that

TNt a.s. TNt+1 a.s.
—_ _> [
N, H N, +1

Forallwe Q, t <Tn, 11 = X1(w) + Xo(w) 4+ 4+ X, (w)41(W).
As t — o0, it forces Ny(w) — oco. Therefore, N"H 2%, 1. Combining all of this, we get 22 0. O

Claim 8.30.1. If X, L X oo, then N, 225 00 as m — 00.

Remark 8.30.1. For this claim, it is not necessary that Xy 25 X or Xn,, g Xoo

Example 8.14. Recall the example that we use in Theorem [8.9| to prove (X, 5 X) =A (X, 22 X). Let Q=[0,1]. Let

1, we[ ﬁ]

m 'm

Ym =1 =
& it {O, Otherwise

Let X,, be the enumeration of Y, .. i.e. X1 =Y11, Xo =Y, X3=Y59, ---.

From the proof of the theorem, we got that X, LN X =0 but X 27 Xoo
For each w € ), and each m > 1, there exists k such that w € [ = m] We denote these as kp, (w).

Let Ny (w) = z;ﬂll i + ki (w). We get that X, () (@) = Vi g, () (@) = L.
However, X., = 0. That means, Xy, 34 X and Xy, 27 Xoo

We move to our next examples, which is the Glivenko-Cantelli Theorem. It is also called the Fundamental Theorem of Statistics.

Theorem 8.31. (Glivenko-Cantelli Theorem) Assume that X ~ F(x) where F(x) is unknown. Let X3, X5,--- be i.i.d. random
samples of X. We define the empirical distribution function, which is also a distribution function of a histogram.

1 & 1 &
=N Z X<z Fy(zw) = NZIXi(w)SI
= i=1

We have that

a.s.

sup |Fy(x) — F(z)| — 0

Proof.
We only proof for the case when F'(z) is continuous.
For each m, we have a partition —co = xg < 1 < -+ < &y, = 00 such that F(z;) — F(x;—1) = %
For all z € [x;_1,x;),
Fy(x) — F(z) < Fn(z;) — F(xi-1) = Fn(2;) — F(x;) +
FN(.’K) — F(.’E) 2 FN(ZL'Z',l) — F((El) = FN(xifl) — F(.’bifl) —

From this, we get

~sup [P (a7) = Flap)] ~ = < Fy(x) = F(a) < sup | F(w:) — Fai)| + = — sup|Fiy(x) ~ P(a)| < sup [Py () = Fla)] + -
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By SLLN, when we fix z, we get
| X
Fy(z) = NZIX'iSw 22 Blx, <. = P(X; <) = F(x) P{weQ: Fy(z;w) = F(z) as N - o0}) =1
i=1
Let Cp = {w € Q: Fy(z;w) — F(z) as N — oo}. Notice that if w € (52, Cy,, sup; |Fn(2i;w) — F(x;)| — 0.

1
limsupsup |Fy(z) — F(z)| < —
N T m

Ifwe Mo Nty Cay
limsupsup |Fn(z) — F(z)| =0
N T

Therefore, since (°_, (e Cz: C {w € Q :sup, |Fn(z;w) — F(x)] — 0 as N = oo} and P(C,;) = 1 by SLLN,
P{w € Q:sup|Fy(z;w) — F(z)] > 0as N — c0}) =1

O

We will end here. Of course, there are still a lot of examples that we haven’t explored (including some mentioned during the lectures
that I'm too lazy to include here). We also skipped a lot of proofs in some of the theorems. It is up to you to explore further, either
in other courses or in the future world of mathematics.



Appendix A

Random walk

Example A.1. (Simple random walk) Consider a particle moving on the real line. Every step it moves to the right by 1 with
probability p, and to the left by 1 with probability ¢ = 1 — p. Let Y,, be the position of the particles after n moves and let Yy = a.
Then:

Yn:a+ZXi

where {X;, Xo,---} is a sequence of independently random variables taking 1 with probability p and —1 with probability g.
Random walk is symmetric if p = ¢ = %

Lemma A.1. Simple random walk has the following properties:
1. Tt is spatially homogeneous: P(Y,, = j|Yy = a) =P(Y,, = j + b|Yo = a + b).
2. Tt is temporarily homogeneous: P(Y;,, = j|Yo = a) = P(Yiin = j|Yim = a).
3. It has Markov property: P(Y,,+n = j|Y0, Y1, -, Yi) = P(YVintn = j|[Ym), n > 0.

Proof.

LPY,=jYo=a)=P  Xi=j—a)=PY,=j+bYo=a+0)

2.
m-+n
P( n —.]|YO —(LL (ZX —] _a> _P< Z XL :,j_a> :P()/m+n :jD/m :CL)
1=m-+1
3. If we know Y, then distribution of Y,,,4, depends only on X,,+1, Xint2, -+, Xintn and Yo, Y7, -+ | Y1 does not influence
the dependency.
O
Example A.2. (Probability via sample path counting) Let sample path s = (sg, s1, -+, $,) (outcome/realization of the random
walk), with sg = a and s;41 — s; = £1.
P((Yo, Y1, -+, Yu) = (50,51, - ,8a)) = P ¢" r=#{i:si1 -5 =1} C=4{i: si41 — si = —1}
Example A.3. Let M’ (a,b) be number of paths (sg, s1, -, $n) with sg = a, s, = b and having r rightward steps.

P(Y, = b) ZM’“ab gt
Byr+f{=nandr—{=b—a,r=3(n+b—a)and {=(n—b+a). If 3(n+b—a)€{0,1,--- ,n},
P(Y :b): " p%(n+b_a)q%(n_b+a)
" i(n+b—a)

Otherwise, P(Y,, = b) = 0.

Theorem A.2. (Reflection principle) Let N,,(a,b) be number of possible paths from (0, a) to (n,b) and let N2(a,b) be number of

111
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such paths which contains some point (k,0) on the z-axis. If a,b > 0, then:

N%a,b) = N,(—a,b)

Proof.

Each path from (0, —a) to (n,b) intersects the x-axis at some earliest point (k,0).

Reflect the segment of the path with 0 < z < k in the z-axis to obtain a path joining (0, a) to (n,b) which intersects the z-axis.
This operation gives a one-to-one correspondence between the collections of such paths. O

Lemma A.3.

Ny (a,b) = (%(n +nb - a))

Proof.

Choose a path from (0,a) to (n,b) and let @ and 8 be numbers of positive and negative steps in this path respectively.
Then a+ 8 =n and o — 3 = b — a, which we have a = £(n+b— a).

Number of such paths is the number of ways of picking « positive steps from n available. Therefore,

Nu(a,b) = <Z) - (;(n +nb— a)>

Example A.4. We want to find the probability that the walk does not revisit its starting point in the first n steps.
Without loss of generality, we assume Yy = 0 so that Y7,Y5,--- Y, # 0 if and only if Y1Y5---Y,, #£ 0.

Event Y1Y5---Y,, # 0 occurs if and only if the path of the walk does not visit the z-axis in the time interval [1, n].
If b > 0, first step must be (1, 1), so, by Lemma and Reflection principle, number of such path is:

Nae1(1,6) = N3_y(1,6) = No_1(1,0) = No_1(=1,)
- <;<nn+_b1— 2)) B (;?{fb))
- (n;zb B n2;b) (;<nn+ b))
- z(é(nn+ b>>

There are %(n + b) rightward steps and %(n —b) leftward steps. Therefore,

IP)(}/1}/2 Y, #£0,Y, = b) = %Nn(o’b)p%(n—kb)q%(n—b) = %P(Yn = b)

Example A.5. Let M,, = max{Y; : 0 < i < n} be the maximum value attained by random walk up to time n. Suppose that
Yy = 0 so that M,, > 0. We have M,, > Y,,.

Theorem A.4. Suppose that Yy = 0. Then, for r > 1,
P(Y, =), ifb>r
P(Y,=2r-0), ifbo<r
It follows that, for r» > 1,
r—1 r—b oo c—r
P(M,271)=P(Ya2r)+ > <q> P(Y,=2r—b)=P(Yp=7)+ > <1+ (q> )P(Yn = ¢)
p p
b=—o0

For symmetric case when p = q = %,

P(M, >r)=2P(Y,>r+1)+PY,=71)
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Proof.
Assume that r > 1 and b < r. Let N (0,b) be number of paths from (0,0) to (n,b) which include some points having height r (Some

point (i,7) with 0 <4 < n). For a path =, let (i,,r) be the earliest point.
We reflect the segment of path with i, < 2 < n in the line y = r to obtain path 7’ joining (0,0) to (n,2r — b).
We have N/ (0,b) = N,,(0,2r — b).

r—b r—b
P(My = 1., = ) = N0, H 000 — (1), 0,20 - g2 — (1) ey, 2
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Appendix B

Terminologies in other fields of mathematics

Definition B.1. Supremum of subset S is the lowest upper bound z such that for all a € S, z > a. We write it as

r =supS

Definition B.2. Infimum of subset S is the highest lower bound x such that for all b € S, x < b. We write it as

r = inf S
Definition B.3. Limit superior and limit inferior of a sequence x1, x5, -- are defined by
limsupx, = lim sup x,, liminf z, = lim inf z,,
n—00 n=00 1>y n—o00 n—o0o m>n

Definition B.4. Infinite series ZZOZO a, is absolutely convergent if for some real numbers L,

Z |an| =L
n=0

Any groupings and rearrangings of absolutely convergent infinite series do not change the result of the infinite series.
An infinite series is conditionally convergent if it converges but does not satisfy the condition.

Definition B.5. (Monotonicity) Monotonic function is a function that is either entirely non-increasing or entirely non-
decreasing.
Strictly monotonic function is a function that is either entirely strictly increasing or entirely strictly decreasing.

Definition B.6. Arguments of the maxima are the input points at which a function output is maximized. It is defined as

argmax f(z) = {x € S: f(x) > f(s) for all s € S}
eSS

Definition B.7. Arguments of the minima are the input points at which a function output is minimized. It is defined as

argmin f(z) = {z € S: f(x) < f(s) for all s € S}
€S

Definition B.8. (Linearity) Linear function is a function f that satisfies the following two properties:

L flz+y) = f2)+ f(y)
2. f(az) = af(x) for all a

Definition B.9. Regular function is a function f that is
1. single-valued (any values in the domain will map to exactly one value)

2. analytic (f can be written as a convergent power series)

115
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Definition B.10. Let V be a space of all real functions on [0, 1]. ||| : V' — R is a norm of a function f if
1. Ifll=0forall feV
2. If | f|]| = O, then f = 0.
3. |laf|l = la|||f|| for all f €V and a € R
4. (Triangle inequality) || f + g|| < [|f|| + llg|| for all f,g € V

The L, norm for p > 1 is defined as

1

1= ([ 1500 as)”

The infinity norm of a function f € V is defined to be

[flloc = max [f(z)]

0<z<1

Definition B.11. Let f and g be real-valued functions.

1. We write f(z) = O(g(x)) if and only if:
f(z)

limsup —= < oo
z—o0 9(T)
It is called big O notation.
2. We write f(x) = o(g(z)) if and only if:
lim @ =0
It is called small o notation.
3. We write f(x) = Q(g(x)) if and only if:
lim inf M >0
a—oo ()
It is called big Omega notation.
4. We write f(z) = w(g(z)) if and only if:
lim M =00

It is called small omega notation.

5. Functions f and g are asymptotic equivalent (f ~ g) if and only if

@)

6. If f(x) =O(g(z)) and g(x) = O(f(x)), then we write:




Appendix C

Some useful inequalities

Theorem C.1. (Triangle inequality) Let X and Y be random variables. Then

X +Y| <|X]+ Y]

Theorem C.2. (Reverse triangle inequality) Let X and Y be random variables. Then

|X = Y[ = [|X] - [¥]|

Theorem C.3. (Cauchy-Schwarz inequality) Let X and Y be random variables. Then

E(XY)|* < E(X?)E(Y?)

Theorem C.4. (Covariance inequality) Let X and Y be random variables. Then

lcov(X,Y)|* < Var(X) Var(Y)

Theorem C.5. (Markov’s inequality) Let X be a random variable with finite mean, then for all £k > 0 and any non-negative
function + that is increasing on [0, c0),

E(y(1X1)
Pl X[ > k) < —F)

Theorem C.6. (Chebyshev’s inequality) Let X be a random variable with EX = p and Var(X) = o2. Then for all k > 0,

1
P(|X — p| = ko) < 72

Theorem C.7. (Holder’s inequality) Let X and Y be random variables. For any p > 1, let ¢ = I%, then

E|XY|< (E|X]P)7(E|Y])s

Theorem C.8. (Lyapunov’s inequality) Let X be a random variable. For all 0 < s < r,

(E|X|*)* < (E|X|")*

Theorem C.9. (Minkowski inequality) Let X and Y be random variables. For any r > 1,

ry 1 ry L ry L
EX+Y])" <(EIX])" +EY])

Theorem C.10. (Jensen’s inequality) Let X be a random variables and v be a convex function. Then

v(EX) < E(y(X))

For better memorization,

Triangle inequality = Reverse triangle inequality

Markov’s inequality = Chebyshev’s inequality

Holder’s inequality = Cauchy-Schwarz inequality = Covariance inequality
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Change Log

1.0
1.1
1.2

1.3

1.4

2.0

Create the notes

Add the definition ”Parametric distribution” in Chapter 5.5 ”Examples of continuous random variables”

Add the Student’s t-distribution and the properties of chi-squared distribution
Add theorems that relate sample mean and sample variance with distributions
Create a new Chapter 7.8 ”Sampling”

Add a remark in De Moivre-Laplace Limit Theorem

Fix some typos

Modify the wording of some theorems

Add the definition of random sample and combine it with sample mean and sample variance
Add the definitions related to asymptotic notations

Change how Change Log is produced

Add a Lemma linking Gamma distribution and Chi-squared distribution
Add Slutsky’s Theorem

Add multivariate normal distribution

Modify the appearance of random vectors

Combining all expectation related topic into a separate chapter

Greatly modify the ordering of topics

Add MGF of some of the distribution taught

Add a theorem that allows estimating population variance from population mean

Finish the proof of a theorem that allows estimating population variance from sample variance
Add a theorem that correlates uncorrelated bivariate normal and independent normal

Add a lemma regarding the properties of covariance

Add definition of conditional variance and Law of total variance

Modify notations for regular convergence
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